وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

PyTorch for Deep Learning with Python Bootcamp

سرفصل های دوره

Learn how to create state of the art neural networks for deep learning with Facebook's PyTorch Deep Learning library!


1 - Course Overview Installs and Setup
  • 1 - COURSE OVERVIEW LECTURE PLEASE DO NOT SKIP
  • 1 - PYTORCH-NOTEBOOKS.zip
  • 2 - Installation and Environment Setup
  • 2 - Link for yml environment file.txt
  • 2 - PYTORCH-NOTEBOOKS.zip

  • 2 - COURSE OVERVIEW CONFIRMATION CHECK
  • 1 - DID YOU WATCH THE COURSE OVERVIEW LECTURE.html

  • 3 - Crash Course NumPy
  • 3 - Introduction to NumPy
  • 4 - NumPy Arrays
  • 5 - NumPy Arrays Part Two
  • 6 - Numpy Index Selection
  • 7 - NumPy Operations
  • 8 - Numpy Exercises
  • 9 - Numpy Exercises Solutions

  • 4 - Crash Course Pandas
  • 10 - Pandas Overview
  • 11 - Pandas Series
  • 12 - Pandas DataFrames Part One
  • 13 - Pandas DataFrames Part Two
  • 14 - GroupBy Operations
  • 15 - Pandas Operations
  • 16 - Data Input and Output
  • 17 - Pandas Exercises
  • 18 - Pandas Exercises Solutions

  • 5 - PyTorch Basics
  • 19 - PyTorch Basics Introduction
  • 20 - Tensor Basics
  • 21 - Tensor Basics Part Two
  • 22 - Tensor Operations
  • 23 - Tensor Operations Part Two
  • 24 - PyTorch Basics Exercise
  • 25 - PyTorch Basics Exercise Solutions

  • 6 - Machine Learning Concepts Overview
  • 26 - What is Machine Learning
  • 27 - Supervised Learning
  • 28 - Overfitting
  • 29 - Evaluating Performance Classification Error Metrics
  • 30 - Evaluating Performance Regression Error Metrics
  • 31 - Unsupervised Learning

  • 7 - ANN Artificial Neural Networks
  • 32 - Introduction to ANN Section
  • 33 - Theory Perceptron Model
  • 34 - Theory Neural Network
  • 35 - Theory Activation Functions
  • 36 - MultiClass Classification
  • 37 - Theory Cost Functions and Gradient Descent
  • 38 - BackPropagation Explained 1.txt
  • 38 - Backpropagation Great Theory Book.txt
  • 38 - Theory BackPropagation
  • 39 - PyTorch Gradients
  • 40 - Linear Regression with PyTorch
  • 41 - Linear Regression with PyTorch Part Two
  • 42 - DataSets with PyTorch
  • 43 - Basic Pytorch ANN Part One
  • 44 - Basic PyTorch ANN Part Two
  • 45 - Basic PyTorch ANN Part Three
  • 46 - Introduction to Full ANN with PyTorch
  • 47 - Full ANN Code Along Regression Part One Feature Engineering
  • 48 - Full ANN Code Along Regression Part 2 Categorical and Continuous Features
  • 49 - Full ANN Code Along Regression Part Three Tabular Model
  • 50 - Full ANN Code Along Regression Part Four Training and Evaluation
  • 51 - Full ANN Code Along Classification Example
  • 52 - ANN Exercise Overview
  • 53 - ANN Exercise Solutions

  • 8 - CNN Convolutional Neural Networks
  • 54 - Introduction to CNNs
  • 55 - Understanding the MNIST data set
  • 56 - ANN with MNIST Part One Data
  • 57 - ANN with MNIST Part Two Creating the Network
  • 58 - ANN with MNIST Part Three Training
  • 59 - ANN with MNIST Part Four Evaluation
  • 60 - Image Filters and Kernels
  • 61 - Convolutional Layers
  • 62 - Pooling Layers
  • 63 - MNIST Data Revisited
  • 64 - MNIST with CNN Code Along Part One
  • 65 - MNIST with CNN Code Along Part Two
  • 66 - MNIST with CNN Code Along Part Three
  • 67 - CIFAR10 DataSet with CNN Code Along Part One
  • 68 - CIFAR10 DataSet with CNN Code Along Part Two
  • 69 - Google Drive Download Link for CATSDOGS zip file.txt
  • 69 - Loading Real Image Data Part One
  • 70 - Loading Real Image Data Part Two
  • 71 - CNN on Custom Images Part One Loading Data
  • 72 - CNN on Custom Images Part Two Training and Evaluating Model
  • 73 - CNN on Custom Images Part Three PreTrained Networks
  • 74 - CNN Exercise
  • 75 - CNN Exercise Solutions

  • 9 - Recurrent Neural Networks
  • 76 - Introduction to Recurrent Neural Networks
  • 77 - RNN Basic Theory
  • 78 - Vanishing Gradients
  • 79 - LSTMS and GRU
  • 80 - RNN Batches Theory
  • 81 - RNN Creating Batches with Data
  • 82 - Basic RNN Creating the LSTM Model
  • 83 - Basic RNN Training and Forecasting
  • 84 - RNN on a Time Series Part One
  • 85 - RNN on a Time Series Part Two
  • 86 - RNN Exercise
  • 87 - RNN Exercise Solutions

  • 10 - Using a GPU with PyTorch and CUDA
  • 88 - CUDA with PyTorch.txt
  • 88 - NVIDIA CUDA Installation Page.txt
  • 88 - Official Docs on Pytorch on Google Colab.txt
  • 88 - PyTorch Official Install Page.txt
  • 88 - PyTorch on AWS.txt
  • 88 - PyTorch on Google Cloud Platform.txt
  • 88 - PyTorch on Microsoft Azure.txt
  • 88 - Why do we need GPUs
  • 89 - Using GPU for PyTorch

  • 11 - NLP with PyTorch
  • 90 - Introduction to NLP with PyTorch
  • 91 - Encoding Text Data
  • 92 - Generating Training Batches
  • 93 - Creating the LSTM Model
  • 94 - Training the LSTM Model
  • 95 - Google Drive Link for another Model.txt
  • 95 - OUR MODEL FOR DOWNLOAD.html
  • 96 - Generating Predictions

  • 12 - BONUS SECTION THANK YOU
  • 97 - BONUS LECTURE.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 32537
    حجم: 7185 مگابایت
    مدت زمان: 1021 دقیقه
    تاریخ انتشار: ۶ فروردین ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید