وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning 101 with Scikit-learn and StatsModels

سرفصل های دوره

New to machine learning? This is the place to start: Linear regression, Logistic regression & Cluster Analysis


01 - Introduction
  • 001 What Does the Course Cover

  • 02 - Setting Up The Working Environment
  • 001 Setting Up the Environment - An Introduction (Do Not Skip, Please)!
  • 002 Why Python and Why Jupyter
  • 003 Installing Anaconda
  • 004 The Jupyter Dashboard - Part 1
  • 005 The Jupyter Dashboard - Part 2
  • 006 Jupyter Shortcuts.html
  • 006 Shortcuts-for-Jupyter.pdf
  • 007 Installing sklearn
  • 008 Installing Packages - Exercise.html
  • 009 Installing Packages - Solution.html

  • 03 - Linear Regression with StatsModels
  • 001 Course-notes-regression-analysis.pdf
  • 001 Introduction to Regression Analysis
  • 002 Course-notes-regression-analysis.pdf
  • 002 The Linear Regression Model
  • 003 Correlation vs Regression
  • 004 Geometrical Representation
  • 005 Python Packages Installation
  • 006 Simple Linear Regression in Python
  • 007 Simple Linear Regression in Python - Exercise.html
  • 008 What is Seaborn
  • 009 What Does the StatsModels Summary Regression Table Tell us
  • 010 SST, SSR, and SSE
  • 011 The Ordinary Least Squares (OLS)
  • 012 Goodness of Fit The R-Squared
  • 013 The Multiple Linear Regression Model
  • 014 Adjusted R-Squared
  • 015 Multiple Linear Regression - Exercise.html
  • 016 F-Statistic and F-Test for a Linear Regression
  • 017 Assumptions of the OLS Framework
  • 018 A1 Linearity
  • 019 A2 No Endogeneity
  • 020 A3 Normality and Homoscedasticity
  • 021 A4 No Autocorrelation
  • 022 A5 No Multicollinearity
  • 023 Dealing with Categorical Data
  • 024 Dealing with Categorical Data - Exercise.html
  • 025 Making Predictions
  • external-links.txt

  • 04 - Linear Regression with Sklearn
  • 001 What is sklearn
  • 002 Game Plan for sklearn
  • 003 Simple Linear Regression with sklearn
  • 004 Simple Linear Regression with sklearn - Summary Table
  • 005 A Note on Normalization.html
  • 006 Simple Linear Regression with sklearn - Exercise.html
  • 007 Multiple Linear Regression with sklearn
  • 008 Adjusted R-Squared
  • 009 Adjusted R-Squared - Exercise.html
  • 010 Feature Selection through p-values (F-regression)
  • 011 A Note on Calculation of P-values with sklearn.html
  • 012 Creating a Summary Table with the p-values
  • 013 Multiple Linear Regression - Exercise.html
  • 014 Feature Scaling
  • 015 Feature Selection through Standardization
  • 016 Making Predictions with Standardized Coefficients
  • 017 Feature Scaling - Exercise.html
  • 018 Underfitting and Overfitting
  • 019 Training and Testing
  • external-links.txt

  • 05 - Linear Regression - Practical Example
  • 001 Practical Example (Part 1)
  • 002 Practical Example (Part 2)
  • 003 A Note on Multicollinearity.html
  • 004 Practical Example (Part 3)
  • 005 Dummies and VIF - Exercise.html
  • 006 Practical Example (Part 4)
  • 007 Dummy Variables Interpretation - Exercise.html
  • 008 Practical Example (Part 5)
  • 009 Linear Regression - Exercise.html
  • external-links.txt

  • 06 - Logistic Regression
  • 001 Course-Notes-Logistic-Regression.pdf
  • 001 Introduction to Logistic Regression
  • 002 A Simple Example of a Logistic Regression in Python
  • 002 Course-Notes-Logistic-Regression.pdf
  • 003 What is the Difference Between a Logistic and a Logit Function
  • 004 Your First Logistic Regression
  • 005 Your First Logistic Regression - Exercise.html
  • 006 A Coding Tip (optional)
  • 007 Going through the Regression Summary Table
  • 008 Going through the Regression Summary Table - Exercise.html
  • 009 Interpreting the Odds Ratio
  • 010 Dummies in a Logistic Regression
  • 011 Dummies in a Logistic Regression - Exercise.html
  • 012 Assessing the Accuracy of a Classification Model
  • 013 Assessing the Accuracy of a Classification Model - Exercise.html
  • 014 Underfitting and Overfitting
  • 015 Testing our Model and Bulding a Confusion Matrix
  • 016 Testing our Model and Bulding a Confusion Matrix - Exercise.html
  • external-links.txt

  • 07 - Cluster Analysis
  • 001 Course-Notes-Cluster-Analysis.pdf
  • 001 Introduction to Cluster Analysis
  • 002 Course-Notes-Cluster-Analysis.pdf
  • 002 Examples of Clustering
  • 003 Classification vs Clustering
  • 004 Math Concepts Needed to Proceed
  • 005 K-Means Clustering
  • 006 A Hands on Example of K-Means
  • 007 A Hands on Example of K-Means - Exercise.html
  • 008 Categorical Data in Cluster Analysis
  • 009 Categorical Data in Cluster Analysis - Exercise.html
  • 010 The Elbow Method or How to Choose the Number of Clusters
  • 011 The Elbow Method or How to Choose the Number of Clusters - Exercise.html
  • 012 Pros and Cons of K-Means
  • 013 Standardization of Features when Clustering
  • 014 Cluster Analysis and Regression Analysis
  • 015 Practical Example Market Segmentation (Part 1)
  • 016 Practical Example Market Segmentation (Part 2)
  • 017 What Can be Done with Cluster Analysis
  • 018 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
  • 019 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
  • external-links.txt

  • 08 - Cluster Analysis Additional Topics
  • 001 Other Types of Clustering
  • 002 The Dendrogram
  • 003 Heatmaps
  • 004 Completing 100%.html
  • external-links.txt
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18822
    حجم: 1383 مگابایت
    مدت زمان: 314 دقیقه
    تاریخ انتشار: ۱۴ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید