وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning 101 with Scikit-learn and StatsModels

سرفصل های دوره

New to machine learning? This is the place to start: Linear regression, Logistic regression & Cluster Analysis


01 - Introduction
  • 001 What Does the Course Cover

  • 02 - Setting Up The Working Environment
  • 001 Setting Up the Environment - An Introduction (Do Not Skip, Please)!
  • 002 Why Python and Why Jupyter
  • 003 Installing Anaconda
  • 004 The Jupyter Dashboard - Part 1
  • 005 The Jupyter Dashboard - Part 2
  • 006 Jupyter Shortcuts.html
  • 006 Shortcuts-for-Jupyter.pdf
  • 007 Installing sklearn
  • 008 Installing Packages - Exercise.html
  • 009 Installing Packages - Solution.html

  • 03 - Linear Regression with StatsModels
  • 001 Course-notes-regression-analysis.pdf
  • 001 Introduction to Regression Analysis
  • 002 Course-notes-regression-analysis.pdf
  • 002 The Linear Regression Model
  • 003 Correlation vs Regression
  • 004 Geometrical Representation
  • 005 Python Packages Installation
  • 006 Simple Linear Regression in Python
  • 007 Simple Linear Regression in Python - Exercise.html
  • 008 What is Seaborn
  • 009 What Does the StatsModels Summary Regression Table Tell us
  • 010 SST, SSR, and SSE
  • 011 The Ordinary Least Squares (OLS)
  • 012 Goodness of Fit The R-Squared
  • 013 The Multiple Linear Regression Model
  • 014 Adjusted R-Squared
  • 015 Multiple Linear Regression - Exercise.html
  • 016 F-Statistic and F-Test for a Linear Regression
  • 017 Assumptions of the OLS Framework
  • 018 A1 Linearity
  • 019 A2 No Endogeneity
  • 020 A3 Normality and Homoscedasticity
  • 021 A4 No Autocorrelation
  • 022 A5 No Multicollinearity
  • 023 Dealing with Categorical Data
  • 024 Dealing with Categorical Data - Exercise.html
  • 025 Making Predictions
  • external-links.txt

  • 04 - Linear Regression with Sklearn
  • 001 What is sklearn
  • 002 Game Plan for sklearn
  • 003 Simple Linear Regression with sklearn
  • 004 Simple Linear Regression with sklearn - Summary Table
  • 005 A Note on Normalization.html
  • 006 Simple Linear Regression with sklearn - Exercise.html
  • 007 Multiple Linear Regression with sklearn
  • 008 Adjusted R-Squared
  • 009 Adjusted R-Squared - Exercise.html
  • 010 Feature Selection through p-values (F-regression)
  • 011 A Note on Calculation of P-values with sklearn.html
  • 012 Creating a Summary Table with the p-values
  • 013 Multiple Linear Regression - Exercise.html
  • 014 Feature Scaling
  • 015 Feature Selection through Standardization
  • 016 Making Predictions with Standardized Coefficients
  • 017 Feature Scaling - Exercise.html
  • 018 Underfitting and Overfitting
  • 019 Training and Testing
  • external-links.txt

  • 05 - Linear Regression - Practical Example
  • 001 Practical Example (Part 1)
  • 002 Practical Example (Part 2)
  • 003 A Note on Multicollinearity.html
  • 004 Practical Example (Part 3)
  • 005 Dummies and VIF - Exercise.html
  • 006 Practical Example (Part 4)
  • 007 Dummy Variables Interpretation - Exercise.html
  • 008 Practical Example (Part 5)
  • 009 Linear Regression - Exercise.html
  • external-links.txt

  • 06 - Logistic Regression
  • 001 Course-Notes-Logistic-Regression.pdf
  • 001 Introduction to Logistic Regression
  • 002 A Simple Example of a Logistic Regression in Python
  • 002 Course-Notes-Logistic-Regression.pdf
  • 003 What is the Difference Between a Logistic and a Logit Function
  • 004 Your First Logistic Regression
  • 005 Your First Logistic Regression - Exercise.html
  • 006 A Coding Tip (optional)
  • 007 Going through the Regression Summary Table
  • 008 Going through the Regression Summary Table - Exercise.html
  • 009 Interpreting the Odds Ratio
  • 010 Dummies in a Logistic Regression
  • 011 Dummies in a Logistic Regression - Exercise.html
  • 012 Assessing the Accuracy of a Classification Model
  • 013 Assessing the Accuracy of a Classification Model - Exercise.html
  • 014 Underfitting and Overfitting
  • 015 Testing our Model and Bulding a Confusion Matrix
  • 016 Testing our Model and Bulding a Confusion Matrix - Exercise.html
  • external-links.txt

  • 07 - Cluster Analysis
  • 001 Course-Notes-Cluster-Analysis.pdf
  • 001 Introduction to Cluster Analysis
  • 002 Course-Notes-Cluster-Analysis.pdf
  • 002 Examples of Clustering
  • 003 Classification vs Clustering
  • 004 Math Concepts Needed to Proceed
  • 005 K-Means Clustering
  • 006 A Hands on Example of K-Means
  • 007 A Hands on Example of K-Means - Exercise.html
  • 008 Categorical Data in Cluster Analysis
  • 009 Categorical Data in Cluster Analysis - Exercise.html
  • 010 The Elbow Method or How to Choose the Number of Clusters
  • 011 The Elbow Method or How to Choose the Number of Clusters - Exercise.html
  • 012 Pros and Cons of K-Means
  • 013 Standardization of Features when Clustering
  • 014 Cluster Analysis and Regression Analysis
  • 015 Practical Example Market Segmentation (Part 1)
  • 016 Practical Example Market Segmentation (Part 2)
  • 017 What Can be Done with Cluster Analysis
  • 018 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
  • 019 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
  • external-links.txt

  • 08 - Cluster Analysis Additional Topics
  • 001 Other Types of Clustering
  • 002 The Dendrogram
  • 003 Heatmaps
  • 004 Completing 100%.html
  • external-links.txt
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18822
    حجم: 1383 مگابایت
    مدت زمان: 314 دقیقه
    تاریخ انتشار: ۱۴ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید