وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

The Supervised Machine Learning Bootcamp

سرفصل های دوره

Data Science, Python, sk learn, Decision Trees, Random Forests, KNNs, Ridge Lasso Regression, SVMs


1 - Introduction
  • 1 - Introduction

  • 2 - Setting up the Environment
  • 2 - Installing Anaconda
  • 3 - Jupyter Dashboard Part 1
  • 4 - Jupyter Dashboard Part 2
  • 5 - Installing the relevant packages

  • 3 - Naive Bayes
  • 1 - Bayes Thought Experiment.html
  • 2 - Bayes Theorem.html
  • 3 - The HamorSpam Example.html
  • 6 - 365-ML-infographic.pdf
  • 6 - Machine-Learning-with-Naive-Bayes-Course-Notes-365-Data-Science.pdf
  • 6 - Motivation
  • 7 - Bayes Thought Experiment
  • 8 - Bayes Thought Experiment Assignment.html
  • 9 - Bayes Theorem
  • 10 - The HamorSpam Example
  • 11 - The HamorSpam Example Assignment.html
  • 12 - Notebooks-and-Dataset.zip
  • 12 - The YouTube Dataset Creating the Data Frame
  • 13 - CountVectorizer
  • 14 - The YouTube Dataset Preprocessing
  • 15 - The YouTube Dataset Preprocessing Assignment.html
  • 15 - exercise-1.zip
  • 15 - exercise-1-solution.zip
  • 15 - youtube-dataset.zip
  • 16 - The YouTube Dataset Classification
  • 17 - The YouTube Dataset Classification Assignment.html
  • 17 - exercise-2.zip
  • 17 - exercise-2-solution.zip
  • 17 - youtube-dataset.zip
  • 18 - The YouTube Dataset Confusion Matrix
  • 19 - The YouTube Dataset Accuracy Precision Recall and the F1 score
  • 20 - The YouTube Dataset Changing the Priors
  • 21 - 365-ML-infographic.pdf
  • 21 - Machine-Learning-with-Naive-Bayes-Course-Notes-365-Data-Science.pdf
  • 21 - Naïve Bayes Assignment.html
  • 21 - exercise-3.zip
  • 21 - exercise-3-solution.zip

  • 4 - KNearest Neighbors
  • 4 - Motivation.html
  • 5 - Math Prerequisites Distance Metrics.html
  • 22 - 365-ML-infographic.pdf
  • 22 - Machine-Learning-with-K-Nearest-Neighbors-Course-Notes-365-Data-Science.pdf
  • 22 - Motivation
  • 23 - Math Prerequisites Distance Metrics
  • 24 - KNeighborsClassifier-Notebooks.zip
  • 24 - Random Dataset Generating the Dataset
  • 25 - Random Dataset Visualizing the Dataset
  • 26 - Random Dataset Classification
  • 27 - Random Dataset How to Break a Tie
  • 28 - Random Dataset Decision Regions
  • 29 - Random Dataset Choosing the Best Kvalue
  • 30 - Random Dataset Grid Search
  • 31 - Random Dataset Model Performance
  • 32 - KNeighborsClassifier-Exercise.zip
  • 32 - KNeighbors Classifier Assignment.html
  • 33 - KNeighborsRegressor-Notebooks.zip
  • 33 - Theory with a Practical Example
  • 34 - KNN vs Linear Regression A Linear Problem
  • 34 - LinearProblem-Notebooks.zip
  • 35 - KNN vs Linear Regression A Nonlinear Problem
  • 35 - NonLinearProblem-Notebooks.zip
  • 36 - KNeighborsRegressor-Exercise.zip
  • 36 - KNeighbors Regressor Assignment.html
  • 37 - 365-ML-infographic.pdf
  • 37 - Machine-Learning-with-K-Nearest-Neighbors-Course-Notes-365-Data-Science.pdf
  • 37 - Pros and Cons

  • 5 - Decision Trees and Random Forests
  • 38 - Course-Notes-Decision-Trees-and-Random-Forests.pdf
  • 38 - What is a Tree in Computer Science
  • 39 - The Concept of Decision Trees
  • 40 - Decision Trees in Machine Learning
  • 41 - Decision Trees Pros and Cons
  • 42 - Practical Example The Iris Dataset
  • 43 - 5.6.creating-a-decision-tree.zip
  • 43 - Practical Example Creating a Decision Tree
  • 44 - 5.7.full-iris-code.zip
  • 44 - Practical Example Plotting the Tree
  • 45 - Decision Tree Metrics Intuition Gini Inpurity
  • 46 - Decision Tree Metrics Information Gain
  • 47 - Tree Pruning Dealing with Overfitting
  • 48 - Random Forest as Ensemble Learning
  • 49 - Bootstrapping
  • 50 - From Bootstrapping to Random Forests
  • 51 - 5.14.random-forest-code-glass-dataset.zip
  • 51 - Glass-dataset.zip
  • 51 - Random Forest in Code Glass Dataset
  • 52 - 5.15.census-data-preprocessing.zip
  • 52 - Census Data and Income Preprocessing
  • 52 - Census-Income-Dataset.zip
  • 53 - 5.16.census-data-decision-tree.zip
  • 53 - Training the Decision Tree
  • 54 - 5.17.census-data-random-forest.zip
  • 54 - Course-Notes-Decision-Trees-and-Random-Forests.pdf
  • 54 - Training the Random Forest

  • 6 - Support Vector Machines
  • 6 - Intro to SVMs.html
  • 7 - Hard margin problem.html
  • 8 - Kernels.html
  • 9 - Implementing a linear SVM.html
  • 55 - 365-ML-infographic.pdf
  • 55 - Introduction to Support Vector Machines
  • 56 - Linearly separable classes hard margin problem
  • 57 - Nonlinearly separable classes soft margin problem
  • 58 - Kernels Intuition
  • 59 - Intro to the practical case
  • 59 - mushrooms-full-dataset.csv
  • 60 - 3.1-support-vector-machines-classification-notebook.zip
  • 60 - Preprocessing the data
  • 61 - Splitting the data into train and test and rescaling
  • 62 - Implementing a linear SVM
  • 63 - Analyzing the results Confusion Matrix Precision and Recall
  • 64 - Crossvalidation
  • 65 - 3.8-support-vector-machines-classification-complete.zip
  • 65 - Choosing the kernels and C values for crossvalidation
  • 66 - Hyperparameter tuning using GridSearchCV
  • 67 - Support Vector Machines Assignment.html
  • 67 - social.csv
  • 67 - social-purchase-svms-assignment-3.zip
  • 67 - social-purchase-svms-assignment-3-solution.zip

  • 7 - Ridge and Lasso Regression
  • 10 - Ridge Regression Mechanics.html
  • 11 - Lasso Regression Basics.html
  • 12 - Crossvalidation for Choosing a Tuning Parameter.html
  • 68 - 365-ML-infographic.pdf
  • 68 - Regression Analysis Overview
  • 69 - Overfitting and Multicollinearity
  • 70 - Introduction to Regularization
  • 71 - Ridge Regression Basics
  • 72 - Ridge Regression Mechanics
  • 73 - Regularization in More Complicated Scenarios
  • 74 - Lasso Regression Basics
  • 75 - Lasso Regression vs Ridge Regression
  • 76 - Hitters.csv
  • 76 - Hitters-Data-Legend.xlsx
  • 76 - The Hitters Dataset Preprocessing and Preparation
  • 76 - multiple-linear-regression-ridge-lasso-hitters.zip
  • 77 - Exploratory Data Analysis
  • 78 - Performing Linear Regression
  • 79 - Crossvalidation for Choosing a Tuning Parameter
  • 80 - Performing Ridge Regression with Crossvalidation
  • 81 - Performing Lasso Regression with Crossvalidation
  • 82 - Comparing the Results
  • 83 - Replacing the Missing Values in the DataFrame
  • 83 - exercise.zip
  • 83 - exercise-solutions.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 255
    حجم: 2836 مگابایت
    مدت زمان: 352 دقیقه
    تاریخ انتشار: ۲۲ دی ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید