وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Artificial Intelligence with Machine Learning, Deep Learning

سرفصل های دوره

Artificial Intelligence (AI) with Python Machine Learning and Python Deep Learning, Transfer Learning, Tensorflow


1 - Numpy
  • 1 - Installing Anaconda Distribution for Windows
  • 2 - Notebook Project Files Link regarding NumPy Python Programming Language Library.html
  • 3 - Installing Anaconda Distribution for MacOs
  • 4 - 6 Article Advice And Links about Numpy Numpy Pyhon.html
  • 5 - Installing Anaconda Distribution for Linux
  • 6 - Introduction to NumPy Library
  • 7 - The Power of NumPy
  • 8 - Creating NumPy Array with The Array Function
  • 9 - Creating NumPy Array with Zeros Function
  • 10 - Creating NumPy Array with Ones Function
  • 11 - Creating NumPy Array with Full Function
  • 12 - Creating NumPy Array with Arange Function
  • 13 - Creating NumPy Array with Eye Function
  • 14 - Creating NumPy Array with Linspace Function
  • 15 - Creating NumPy Array with Random Function
  • 16 - Properties of NumPy Array
  • 17 - Identifying the Largest Element of a Numpy Array
  • 18 - Detecting Least Element of Numpy Array Min Ar
  • 19 - Reshaping a NumPy Array Reshape Function
  • 20 - Concatenating Numpy Arrays Concatenate Functio
  • 21 - Splitting OneDimensional Numpy Arrays The Split
  • 22 - Splitting TwoDimensional Numpy Arrays Split
  • 23 - Sorting Numpy Arrays Sort Function
  • 24 - Indexing Numpy Arrays
  • 25 - Slicing OneDimensional Numpy Arrays
  • 26 - Slicing TwoDimensional Numpy Arrays
  • 27 - Assigning Value to OneDimensional Arrays
  • 28 - Assigning Value to TwoDimensional Array
  • 29 - Fancy Indexing of OneDimensional Arrrays
  • 30 - Fancy Indexing of TwoDimensional Arrrays
  • 31 - Combining Fancy Index with Normal Indexing
  • 32 - Combining Fancy Index with Normal Slicing
  • 33 - Operations with Comparison Operators
  • 34 - Arithmetic Operations in Numpy
  • 35 - Statistical Operations in Numpy
  • 36 - Solving SecondDegree Equations with NumPy

  • 2 - Pandas
  • 37 - Pandas Project Files Link.html
  • 38 - Introduction to Pandas Library
  • 39 - Creating a Pandas Series with a List
  • 40 - Creating a Pandas Series with a Dictionary
  • 41 - Creating Pandas Series with NumPy Array
  • 42 - Object Types in Series
  • 43 - Examining the Primary Features of the Pandas Seri
  • 44 - Most Applied Methods on Pandas Series
  • 45 - Indexing and Slicing Pandas Series
  • 46 - Creating Pandas DataFrame with List
  • 47 - Creating Pandas DataFrame with NumPy Array
  • 48 - Creating Pandas DataFrame with Dictionary
  • 49 - Examining the Properties of Pandas DataFrames
  • 50 - Element Selection Operations in Pandas DataFrames Lesson 1
  • 51 - Element Selection Operations in Pandas DataFrames Lesson 2
  • 52 - Top Level Element Selection in Pandas DataFramesLesson 1
  • 53 - Top Level Element Selection in Pandas DataFramesLesson 2
  • 54 - Top Level Element Selection in Pandas DataFramesLesson 3
  • 55 - Element Selection with Conditional Operations in Pandas Data Frames
  • 56 - Adding Columns to Pandas Data Frames
  • 57 - Removing Rows and Columns from Pandas Data frames
  • 58 - Null Values in Pandas Dataframes
  • 59 - Dropping Null Values Dropna Function
  • 60 - Filling Null Values Fillna Function
  • 61 - Setting Index in Pandas DataFrames
  • 62 - MultiIndex and Index Hierarchy in Pandas DataFrames
  • 63 - Element Selection in MultiIndexed DataFrames
  • 64 - Selecting Elements Using the xs Function in MultiIndexed DataFrames
  • 65 - Concatenating Pandas Dataframes Concat Function
  • 66 - Merge Pandas Dataframes Merge Function Lesson 1
  • 67 - Merge Pandas Dataframes Merge Function Lesson 2
  • 68 - Merge Pandas Dataframes Merge Function Lesson 3
  • 69 - Merge Pandas Dataframes Merge Function Lesson 4
  • 70 - Joining Pandas Dataframes Join Function
  • 71 - Loading a Dataset from the Seaborn Library
  • 72 - Examining the Data Set 1
  • 73 - Aggregation Functions in Pandas DataFrames
  • 74 - Examining the Data Set 2
  • 75 - Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes
  • 76 - Advanced Aggregation Functions Aggregate Function
  • 77 - Advanced Aggregation Functions Filter Function
  • 78 - Advanced Aggregation Functions Transform Function
  • 79 - Advanced Aggregation Functions Apply Function
  • 80 - Examining the Data Set 3
  • 81 - Pivot Tables in Pandas Library
  • 82 - Accessing and Making Files Available
  • 83 - Data Entry with Csv and Txt Files
  • 84 - Data Entry with Excel Files
  • 85 - Outputting as an CSV Extension
  • 86 - Outputting as an Excel File

  • 3 - First Contact with Machine Learning
  • 87 - What is Machine Learning
  • 88 - Machine Learning Terminology
  • 89 - Project Files Link.html

  • 4 - Evalution Metrics in Machine Learning
  • 90 - Classification vs Regression in Machine Learning
  • 91 - Machine Learning Model Performance Evaluation Classification Error Metrics
  • 92 - Evaluating Performance Regression Error Metrics in Python
  • 93 - Machine Learning With Python

  • 5 - Supervised Learning with Machine Learning
  • 94 - What is Supervised Learning in Machine Learning

  • 6 - Linear Regression Algorithm in Machine Learning AZ
  • 95 - Linear Regression Algorithm Theory in Machine Learning AZ
  • 96 - Linear Regression Algorithm With Python Part 1
  • 97 - Linear Regression Algorithm With Python Part 2
  • 98 - Linear Regression Algorithm With Python Part 3
  • 99 - Linear Regression Algorithm With Python Part 4

  • 7 - Bias Variance TradeOff in Machine Learning
  • 100 - What is Bias Variance TradeOff

  • 8 - Logistic Regression Algorithm in Machine Learning AZ
  • 101 - What is Logistic Regression Algorithm in Machine Learning
  • 102 - Logistic Regression Algorithm with Python Part 1
  • 103 - Logistic Regression Algorithm with Python Part 2
  • 104 - Logistic Regression Algorithm with Python Part 3
  • 105 - Logistic Regression Algorithm with Python Part 4
  • 106 - Logistic Regression Algorithm with Python Part 5

  • 9 - Kfold CrossValidation in Machine Learning AZ
  • 107 - KFold CrossValidation Theory
  • 108 - KFold CrossValidation with Python

  • 10 - K Nearest Neighbors Algorithm in Machine Learning AZ
  • 109 - K Nearest Neighbors Algorithm Theory
  • 110 - K Nearest Neighbors Algorithm with Python Part 1
  • 111 - K Nearest Neighbors Algorithm with Python Part 2
  • 112 - K Nearest Neighbors Algorithm with Python Part 3

  • 11 - Hyperparameter Optimization
  • 113 - Hyperparameter Optimization Theory
  • 114 - Hyperparameter Optimization with Python

  • 12 - Decision Tree Algorithm in Machine Learning AZ
  • 115 - Decision Tree Algorithm Theory
  • 116 - Decision Tree Algorithm with Python Part 1
  • 117 - Decision Tree Algorithm with Python Part 2
  • 118 - Decision Tree Algorithm with Python Part 3
  • 119 - Decision Tree Algorithm with Python Part 4
  • 120 - Decision Tree Algorithm with Python Part 5

  • 13 - Random Forest Algorithm in Machine Learning AZ
  • 121 - Random Forest Algorithm Theory
  • 122 - Random Forest Algorithm with Pyhon Part 1
  • 123 - Random Forest Algorithm with Pyhon Part 2

  • 14 - Support Vector Machine Algorithm in Machine Learning AZ
  • 124 - Support Vector Machine Algorithm Theory
  • 125 - Support Vector Machine Algorithm with Python Part 1
  • 126 - Support Vector Machine Algorithm with Python Part 2
  • 127 - Support Vector Machine Algorithm with Python Part 3
  • 128 - Support Vector Machine Algorithm with Python Part 4

  • 15 - Unsupervised Learning
  • 129 - Unsupervised Learning Overview

  • 16 - K Means Clustering Algorithm in Machine Learning AZ
  • 130 - K Means Clustering Algorithm Theory
  • 131 - K Means Clustering Algorithm with Python Part 1
  • 132 - K Means Clustering Algorithm with Python Part 2
  • 133 - K Means Clustering Algorithm with Python Part 3
  • 134 - K Means Clustering Algorithm with Python Part 4

  • 17 - Hierarchical Clustering Algorithm in Machine Learning AZ
  • 135 - Hierarchical Clustering Algorithm Theory
  • 136 - Hierarchical Clustering Algorithm with Python Part 1
  • 137 - Hierarchical Clustering Algorithm with Python Part 2

  • 18 - Principal Component Analysis PCA in Machine Learning AZ
  • 138 - Principal Component Analysis PCA Theory
  • 139 - Principal Component Analysis PCA with Python Part 1
  • 140 - Principal Component Analysis PCA with Python Part 2
  • 141 - Principal Component Analysis PCA with Python Part 3

  • 19 - Recommender System Algorithm in Machine Learning AZ
  • 142 - What is the Recommender System Part 1
  • 143 - What is the Recommender System Part 2

  • 20 - Machine Learning Recap And First Contact with Deep Learning
  • 144 - AI Machine Learning and Deep Learning
  • 145 - History of Machine Learning
  • 146 - Turing Machine and Turing Test
  • 147 - What is Deep Learning
  • 148 - Learning Representations From Data
  • 149 - Workflow of Machine Learning
  • 150 - Machine Learning Methods
  • 151 - Supervised Machine Learning Methods 1
  • 152 - Supervised Machine Learning Methods 2
  • 153 - Supervised Machine Learning Methods 3
  • 154 - Supervised Machine Learning Methods 4
  • 155 - Gathering data
  • 156 - Data preprocessing
  • 157 - Choosing the right algorithm and model
  • 158 - Training and testing the model
  • 159 - Evaluation

  • 21 - Artificial Neural Network
  • 160 - What Is ANN
  • 161 - Anatomy of Neural Network
  • 162 - Optimizers in Ai
  • 163 - What is TensorFlow

  • 22 - Convolutional Neural Network
  • 164 - What is CNN

  • 23 - Recurrent Neural Network and LTSM
  • 165 - Understanding RNN and LSTM Networks

  • 24 - Transfer Learning
  • 166 - What is Transfer Learning
  • 167 - What Is Data Science
  • 168 - Data literacy in Data Science
  • 169 - What is Numpy
  • 170 - Why Numpy

  • 25 - Extra
  • 171 - Artificial Intelligence with Machine Learning Deep Learning.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38606
    حجم: 5108 مگابایت
    مدت زمان: 1378 دقیقه
    تاریخ انتشار: ۲۹ تیر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید