وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Modern Computer Vision & Deep Learning with Python & PyTorch

سرفصل های دوره

Computer Vision with Python using Deep Learning for Classification, Instance & Semantic Segmentation, & Object Detection


1. Introduction
  • 1. Introduction to Course

  • 2. What is Computer Vision & its Applications
  • 1. Introduction to Computer Vision and its Real-world Applications
  • 2. Major Computer Vision Tasks

  • 3. Deep Convolutional Neural Networks (CNN) for Computer Vision
  • 1. Introduction to Convolutional Neural Networks (CNN)

  • 4. Setting-up Google Colab for Writing Python Code
  • 1. Introduction to Google Colab for Python Coding
  • 2. Connect Google Colab with Google Drive

  • 5. Image Classification Task of Computer Vision
  • 1. Introduction to Single and Multi-label Image Classification

  • 6. Pretrained Models for Single and Multi-Label Image Classification
  • 1. Introduction to Pretrained Models
  • 2. Deep Learning ResNet and AlexNet Architectures
  • 3. Access Data from Google Drive to Colab
  • 4. Data Preprocessing for Image Classification
  • 5. Single-Label Image Classification using ResNet and AlexNet PreTrained Models
  • 6.1 Lecture 2 - Resources Single Label Classification.zip
  • 6. Single Label Classification Python and Pytorch Code.html
  • 7. Multi-Label Image Classification using Deep Learning Models
  • 8.1 Lecture 2 - Resources Multi Label Classification.zip
  • 8. Multi-Label Classification Python and PyTorch Code.html

  • 7. Transfer Learning for Image Classification
  • 1. Introduction to Transfer Learning
  • 2. Dataset, Data Augmentation, and Dataloaders
  • 3.1 Classification Dataset.zip
  • 3. Dataset for Classification.html
  • 4. FineTuning Deep ResNet Model
  • 5. HyperParameteres Optimization for Model
  • 6. Training Deep ResNet Model
  • 7. Fixed Feature Extractraction using ResNet
  • 8. Model Optimization, Training and Results Visualization
  • 9.1 Code for Transfer Learning by FineTuning and Model Feature Extractor.zip
  • 9. Complete Python Code for Transfer Learning and Dataset.html

  • 8. Semantic Segmentation Task Of Computer Vision
  • 1. Introduction to Semantic Image Segmentation
  • 2. Semantic Segmentation Real-World Applications

  • 9. Deep Learning Architectures For Segmentation (UNet, PSPNet, PAN)
  • 1. Pyramid Scene Parsing Network (PSPNet) For Segmentation
  • 2. UNet Architecture For Segmentation
  • 3. Pyramid Attention Network (PAN)
  • 4. Multi-Task Contextual Network (MTCNet)

  • 10. Segmentation Datasets, Annotations, Data Augmentation & Data Loading
  • 1. Datasets for Semantic Segmentation
  • 2. Data Annotations Tool for Semantic Segmentation
  • 3. Data Loading with PyTorch Customized Dataset Class
  • 4. Data Loading for Segmentation with Python and PyTorch Code.html
  • 5. Data Augmentation using Albumentations with Different Transformations
  • 6. Augmentation Python Code.html
  • 7. Learn To Implement Data Loaders In Pytorch

  • 11. Performance Metrics (IOU) For Segmentation Models Evaluation
  • 1. Performance Metrics (IOU, Pixel Accuracy, Precision, Recall, Fscore)
  • 2. Code (Python and PyTorch).html

  • 12. Encoders and Decoders For Segmentation In PyTorch
  • 1. Transfer Learning And Pretrained Deep Resnet Architecture
  • 2. Encoders for Segmentation with PyTorch Liberary
  • 3. Decoders for Segmentation in PyTorch Liberary

  • 13. Implementation, Optimization and Training Of Segmentation Models
  • 1. Implement Segmentation Models (UNet, PSPNet, DeepLab, PAN, and UNet++)
  • 2. Segmentation Models Code with Python.html
  • 3. Learn To Optimize Hyperparameters For Segmentation Models
  • 4. Model Optimaztion Code (Python And PyTorch).html
  • 5. Training of Segmentation Models
  • 6. Model Training Code (Python And PyTorch).html

  • 14. Test Models and Visualize Segmentation Results
  • 1. Test Models and Calculate IOU,Pixel Accuracy,Fscore
  • 2. Test Models and Calculate Performance Scores (Python Code).html
  • 3. Visualize Segmentation Results and Generate RGB Segmented Map
  • 4. Segmentation Results Visualization (Python Code).html

  • 15. Complete Code and Dataset for Semantic Segmentation
  • 1. Final Code Review
  • 2.1 Lecture 2 - Final Code.zip
  • 2.2 Lecture 3 - TrayDataset for Segmentation.zip
  • 2. Complete Code and Dataset is Attached.html

  • 16. Object Detection Task Of Computer Vision
  • 1. Object Detection and its Applications

  • 17. Deep Learning Architectures for Object Detection (R-CNN Family)
  • 1. Deep Convolutional Neural Network (VGG, ResNet, GoogleNet)
  • 2. RCNN Deep Learning Architectures for Object Detection
  • 3. Fast RCNN Deep Learning Architectures for Object Detection
  • 4. Faster RCNN Deep Learning Architectures for Object Detection

  • 18. Detectron2 for Ojbect Detection
  • 1. Detectron2 for Ojbect Detection with PyTorch
  • 2. Perform Object Detection using Detectron2 Pretrained Models
  • 3.1 object detection with detctron2.zip
  • 3. Python and PyTorch Code.html

  • 19. Training, Evaluating and Visualizing Object Detection on Custom Dataset
  • 1. Custom Dataset for Object Detection
  • 2.1 balloon.zip
  • 2. Dataset for Object Detection.html
  • 3. Train, Evaluate Object Detection Models & Visualizing Results on Custom Dataset
  • 4.1 object detection on custom dataset.zip
  • 4. Python and PyTorch Code.html

  • 20. Complete Code and Custom Dataset for Object Detection
  • 1.1 balloon.zip
  • 1.2 Python and PyTorch Code.zip
  • 1. Resources Code and Custom Dataset for Object Detection.html

  • 21. Instance Segmentation Task of Computer Vision
  • 1. What is Instance Segmentation

  • 22. Mask RCNN for Instance Segmentation
  • 1. Mask RCNN for Instance Segmentation

  • 23. Training, Evaluating and Visualizing Instance Segmentation on Custom Dataset
  • 1. Train, Evaluate Instance Segmentation Model & Visualizing Results on Custom Data

  • 24. Complete Code and Custom Dataset for Instance Segmentation
  • 1.1 balloon.zip
  • 1.2 Instance Segmentation on Custom Dataset.zip
  • 1. Resources Complete Code and Custom Dataset for Instance Segmentation.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 19185
    حجم: 3648 مگابایت
    مدت زمان: 402 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید