وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Kafka Streams API For Developers using Java/SpringBoot 3.X

سرفصل های دوره

Master the Kafka Streams API to build advanced real time Kafka Streaming applications using Java and SpringBoot 3.x.


1. Getting Started With the Course
  • 1. Course Introduction
  • 2. Pre-requestites

  • 2. Getting Started to Kafka Streams
  • 1. Introduction to Kafka Streams
  • 2. Kafka Streams Terminologies - Topology & Processor
  • 3. Introduction to KStreams API

  • 3. Greetings Kafka Streams App using KStreams API
  • 1. Overview of the Greetings App
  • 2.1 2.2-greetings-app-setup.zip
  • 2.2 Github Link.html
  • 2. Setup the Greetings App
  • 3.1 2.3-greetings-app-topology.zip
  • 3. Topology of the Greetings App
  • 4.1 2.4-greetings-launcher-app.zip
  • 4. Build the Kafka Streams Launcher Application
  • 5.1 2.5-kafka-setup-test.zip
  • 5. Setting Up Kafka Environment and Test our Greeting App

  • 4. Operators in Kafka Streams using KStream API
  • 1.1 3.1-filter-filternot.zip
  • 1. Filter & FilterNot
  • 2.1 3.2-map.zip
  • 2. MapMapValues
  • 3.1 3.3-flatMap-flatmapValues.zip
  • 3. FlatMapValuesFlatMap
  • 4.1 3.4-peek.zip
  • 4. peek
  • 5.1 3.5-merge.zip
  • 5. merge

  • 5. Serialization and Deserialization in Kafka Streams
  • 1. How KeyValue serialization and deserialization works in Kafka Streams
  • 2.1 4.1.1-serdes-config.zip
  • 2. Providing Default SerializerDeserializer using Application Configuration
  • 3.1 4.2-custom-serdes.zip
  • 3. Build a Custom Serdes for Enhanced Greeting Messages
  • 4.1 4.3-integrate-custom-serdes.zip
  • 4. Usage of CustomSerde in the Greeting App

  • 6. Reusable Generic SerializerDeserializer (Recommended Approach)
  • 1.1 4.4-build-generic-serdes.zip
  • 1. Build a Generic SerializerDeserializer
  • 2.1 4.5-integrate-generic-serdes.zip
  • 2. Integrate Generic SerializerDeserializer into the Greeting App

  • 7. Order Management Kafka Streams application - A real time use case
  • 1.1 5.1-overview-of-retail-app.zip
  • 1. Overview of the Retail App
  • 2.1 5.2-orders-topology.zip
  • 2. Build the Topology for the Orders Management App
  • 3.1 5.3-branch-split-retail-app.zip
  • 3. Split the RestaurantRetail Shopping Orders - Using split and branch operator
  • 4.1 5.4-transform-order-revenue.zip
  • 4. Transform the Order Domain to a Revenue Domain Type

  • 8. Topology, Stream and Tasks - Under the Hood
  • 1. Internals of Topology, Stream and Tasks
  • 2.1 6.2-streams-modify-property.zip
  • 2. Explore the behavior of streams by modifying the stream threads

  • 9. ErrorException Handling in Kafka Streams
  • 1. Failures in Kafka Streams
  • 2.1 6.4-default-deserialization-error-handler.zip
  • 2. Default Deserialization Error Behavior
  • 3.1 6.5-custom-deserialization-error-handler.zip
  • 3. Custom Deserialization Error Handler
  • 4.1 6.6-default-custom-processor-error-handler.zip
  • 4. Default & Custom Processor Error Handler
  • 5.1 6.7-default-custom-production-handler.zip
  • 5. Custom Production Error Handler
  • 6. Error handling when Kafka Cluster is down

  • 10. KTable & Global KTable
  • 1. Introduction to KTable API
  • 2.1 7.2-ktable-handson.zip
  • 2. Build a topology for KTable
  • 3. KTable - Under the Hood
  • 4. Assignment - Implement the mapValues operator in KTable.html
  • 5.1 7.4-global-k-table.zip
  • 5. GlobalKTable

  • 11. StateFul Operations in Kafka Streams - Aggregate, Join and Windowing Events
  • 1. StateFul Operations in Kafka Streams
  • 2.1 8.2-aggregation-count.zip
  • 2. What is Aggregation & How it works
  • 3.1 8.2.1-aggregation-count-groupby.zip
  • 3. Aggregation using count operator
  • 4.1 8.3-aggregation-reduce.zip
  • 4. Aggregation using reduce operator
  • 5.1 8.4-aggregation-aggregate.zip
  • 5. Aggregation using aggregate operator
  • 6.1 8.5-count-reduce-materialized-views.zip
  • 6. Using Materialized Store for count & reduce operator

  • 12. StateFul Operation Results - How to access them
  • 1. How to access the results of Aggregation

  • 13. Aggregation in Order Management Application - A Real Time Use Case
  • 1.1 9.1-order-management-count.zip
  • 1. Total number of orders by each store using count operator
  • 2.1 9.2-order-management-aggregate.zip
  • 2. Total Revenue by each store using aggregate operator

  • 14. Re-Keying Kafka Records for Stateful operations
  • 1.1 10.1-null-keys-in-stateful-operations.zip
  • 1. Effect of null Key in Stateful Operations & Repartition of Kafka Records
  • 2.1 10.2-rekey-selectkey.zip
  • 2. Re-Keying using the selectKey operator

  • 15. StateFul Operations in Kafka Streams - Join
  • 1. Introduction to Joins & Types of Joins in Kafka Streams
  • 2.1 11.2-join-kstream-ktable.zip
  • 2. Explore innerJoin using join operator - Joining KStream and KTable
  • 3.1 11.3-join-kstream-globalktable.zip
  • 3. Explore innerJoin using join operator - Joining KStream and GlobalKTable
  • 4.1 11.4-join-ktable-ktable.zip
  • 4. Explore innerJoin using join operator - Joining KTable and KTable
  • 5.1 11.5-join-kstream-kstream.zip
  • 5. Explore innerJoin using join operator - Joining KStream and KStream
  • 6.1 11.6-leftjoin.zip
  • 6. Joining Kafka Streams using leftJoin operator
  • 7.1 11.7-outerjoin.zip
  • 7. Joining Kafka Streams using outerJoin operator
  • 8.1 11.8-under-the-hood.zip
  • 8.2 Kafka Commands Link.html
  • 8. Join - Under the hood
  • 9.1 11.9-co-partioning.zip
  • 9. CoPartitioning Requirements in Joins

  • 16. Join in Order Management Application - A Real Time Use Case
  • 1. Join Aggregate Revenue with StoreDetails KTable
  • 2. Join Aggregate Count with Stores KTable.html

  • 17. StateFul Operations in Kafka Streams - Windowing
  • 1. Introduction to Windowing and time concepts
  • 2.1 13.2-tumbling-windows.zip
  • 2. Windowing in Kafka Streams - Tumbling Windows
  • 3.1 13.3-supress.zip
  • 3. Control emission of windowed results using supress operartor
  • 4.1 13.4-hopping-windows.zip
  • 4. Windowing in Kafka Streams - Hopping Windows
  • 5.1 13.5-sliding-windows.zip
  • 5. Windowing in Kafka Streams - Sliding Windows

  • 18. Widowing in Order Management Application - A Real Time Use Case
  • 1. New Requirements for the Order Management Application
  • 2.1 14.2-custom-timestamp-extractor.zip
  • 2. Implementing a CustomTimeStamp Extractor
  • 3.1 14.3-aggregate-orders-by-windows.zip
  • 3. Aggregate Number of Orders by Windows
  • 4.1 14.4-aggregate-orders-by-windows.zip
  • 4. Aggregate Revenue by Windows
  • 5.1 14.5-joins-inwindowed-data.zip
  • 5. Joins on the Windowed Data

  • 19. Behavior of Records with Future & Older Timestamp in Windowing
  • 1.1 16.1-timestamp-behavior.zip
  • 1. Records with timestamps before & after the CurrentTimestamp.

  • 20. Build Kafka Streams Application using SpringBoot
  • 1. Introduction to SpringBoot and Kafka Streams
  • 2.1 17.2-set-up-springboot-kafka-streams.zip
  • 2. Setup the Project - Greeting Streams app using Spring Kafka Streams
  • 3.1 17.3-configure-spring-kafka-streams.zip
  • 3. Configuring the Kafka Stream using application.yml
  • 4.1 17.4-spring-kafka-streams-topology.zip
  • 4. Build the Greeting Topology
  • 5.1 17.5-test-spring-kafka-streams.zip.zip
  • 5. Test Greeting App in Local

  • 21. SpringBoot AutoConfiguration of Kafka Streams
  • 1. Internals of AutoConfiguring Kafka Streams in SpringBoot

  • 22. JSON SerializationDeserialization in Spring Kafka Streams
  • 1.1 18.1-custom-serialization-deserialization.zip
  • 1. JSON SerializationDeserialization using JsonSerde
  • 2.1 18.2-jackson-custom-objectmapper.zip
  • 2. JsonSerde using custom ObjectMapper

  • 23. Error Handling in Spring Kafka Streams
  • 1.1 19.1-spring-deserialization-approach1.zip
  • 1. Handle DeSerialization Error - Approach 1
  • 2.1 19.2-spring-deserialization-approach2.zip
  • 2. Handle DeSerialization Error using Custom Error Handler - Approach 2
  • 3.1 19.3-spring-deserialization-approach3.zip
  • 3.2 Spring for Kafka Reference Link.html
  • 3. Handle DeSerialization Errors using Spring Specific Approach- Approach 3
  • 4.1 19.4-spring-uncaught-exception.zip
  • 4. Handle UncaughtExceptions in the Topology
  • 5.1 19.5-spring-production-errors.zip
  • 5. Handle Production Errors

  • 24. Build Orders Kafka Streams Application using SpringBoot
  • 1. Set up the base project for Orders Kafka Streams App
  • 2.1 20.2-orders-streams-setup-topology.zip
  • 2. Create the OrdersTopology

  • 25. Interactive Queries - Querying State Stores using RESTFUL APIs
  • 1.1 21.1-get-endpoint-orderCount-part1.zip
  • 1. Build a GET Endpoint to retrieve the OrderCount by OrderType - Part 1
  • 2.1 21.1-get-endpoint-orderCount-part2.zip
  • 2. Build a GET Endpoint to retrieve the OrderCount by OrderType - Part 2
  • 3.1 21.2-get-endpoint-orderCount.zip
  • 3. Retrieve OrderCount by OrderType & LocationId
  • 4.1 21.3-get-endpoint-all-ordercount.zip
  • 4. Build a GET Endpoint to retrieve the OrderCount for All OrderTypes
  • 5.1 21.4-get-endpoint-orderRevenue.zip
  • 5. Build a GET Endpoint to retrieve the Revenue by OrderType
  • 6.1 21.5-global-error-handler.zip
  • 6. Global Error Handling for useful Client Error Messages
  • 7. Assignment Retrieve Revenue by OrderType & LocationId.html

  • 26. Interactive Queries - Querying Window State Stores using RESTFUL APIs
  • 1.1 22.1-get-windows-order-count-bytype.zip
  • 1. Build a GET Endpoint to Retrieve OrderCount by OrderType
  • 2.1 22.2-get-windows-order-count-all-types.zip
  • 2. Build a GET Endpoint to Retrieve the windowed OrderCount for All OrderTypes
  • 3.1 22.3-get-windows-order-count-within-range.zip
  • 3. Build a GET endpoint to retrieve the windowed OrderCount within a Time Range
  • 4. Build a GET Endpoint to retrieve the Revenue by OrderType

  • 27. Testing Kafka Streams Using TopologyTestDriver & JUnit5
  • 1.1 Testing Streams Code.html
  • 1. Testing Kafka Streams using TopologyTestDriver
  • 2.1 23.2-unit-testing-greetings-app.zip
  • 2. Unit Testing Greetings App - Writing Data to a Output Topic
  • 3.1 23.3-unit-testing-greetings-app-multiple-messages.zip
  • 3. Unit Testing Greetings App - Testing Multiple Messages
  • 4.1 23.4-unit-testing-greetings-app-error.zip
  • 4. Unit Testing Greetings App - Error Scenario
  • 5.1 23.5-unit-testing-orders-count.zip
  • 5. Unit Testing OrdersCount - Writing Data to a State Store
  • 6.1 23.6-unit-testing-orders-Revenue.zip
  • 6. Unit Testing OrdersRevenue - Writing Data to a State Store
  • 7.1 23.7-unit-testing-orders-Revenue-by-windows.zip
  • 7. Unit Testing OrdersRevenue By Windows - Writing Data to a State Store
  • 8.1 23.8-topology-test-driver-limitations.zip
  • 8. Limitations of TopologyTestDriver

  • 28. Testing Kafka Streams in SpringBoot Using TopologyTestDriver & JUnit5
  • 1.1 24.1-topologyTestdriver-springboot.zip
  • 1. UnitTest Using TopologyTestDriver in SpringBoot

  • 29. Integration Testing Spring KafkaStreams App using @EmbeddedKafka
  • 1.1 25.1-intg-test.zip
  • 1. Introduction & SetUp Integration Test
  • 2.1 25.2-intg-test-orders-count.zip
  • 2. Integration Test for OrdersCount
  • 3.1 25.3-intg-test-orders-revenue.zip
  • 3. Integration Test for OrdersRevenue
  • 4.1 25.4-intg-test-orders-revenue-by-windows.zip
  • 4. Integration Test for OrdersRevenue By Windows

  • 30. Grace Period in Kafka Streams
  • 1.1 26.1-grace-period.zip
  • 1. Grace Period in Windowing

  • 31. Build and Package the SpringBoot App as an Executable
  • 1.1 27.1-kafka-streams-jar.zip
  • 1. Package the SpringBoot app and execute it as a Jar File
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 10788
    حجم: 5581 مگابایت
    مدت زمان: 681 دقیقه
    تاریخ انتشار: ۹ اردیبهشت ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید