وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Deep Learning and Neural Networks with Python Zero to Expert

سرفصل های دوره

Deep Learning with Python for Classification, Semantic and Instance Segmentation, Pose Estimation, and Object Detection


1. Introduction
  • 1. Introduction

  • 2. Introduction to Deep Learning
  • 1. Introduction to Deep Learning vs Machine Learning
  • 2. Building Blocks of Deep Learning - Artificial Neurons

  • 3. Artificial Neural Networks with Python
  • 1. Introduction to Neural Networks.html
  • 2. Perceptron -- Building Block of Neural Networks.html
  • 3. Colab for Writing Python Code

  • 4. Convolutional Neural Networks with Python from Scratch
  • 1. Introduction to Convolutional Neural Networks (CNNs)
  • 2. Coding Convolutional Neural Networks from Scratch with Python
  • 3. Develop CNN with Python and Pytroch Code from Scratch.html
  • 4. Dataset and its Augmentation
  • 5. Pytorch Code for Data Loading and Augmentation.html
  • 6. Hyperparameters Optimization For Convolutional Neural Networks
  • 7. CNN Optimization with Pytorch and Python Code.html
  • 8. Training Convolutional Neural Network from Scratch
  • 9. CNN Training with Python and Pytorch Code.html
  • 10. Validating Convolutional Neural Network on Test Images
  • 11. CNN Testing with Pytorch and Python Code.html
  • 12. Performance Metrics (Accuracy, Precision, Recall, F1 Score) to Evaluate CNNs
  • 13. Visualize Confusion Matrix and Calculate Precision, Recall, and F1 Score
  • 14. Performance Metrics Calculation with Python and Pytorch Code.html
  • 15.1 CNN from Scratch Code.zip
  • 15. Resources Python Code for Convolutional Neural Networks from Scratch.html

  • 5. Deep Convolutional Neural Networks with Python for Image Classification
  • 1. Coding DEEP CNN from Scratch for Image Classification
  • 2. Optimize, Train and Test Deep CNN with Improved Performance
  • 3. Deep CNN Python and Pytroch Code.html

  • 6. Deep Learning Pretrained Models with Python
  • 1. PreTrained Deep Learning Models Importance
  • 2. Deep Learning ResNet and AlexNet Architectures
  • 3. Read Data from Google Drive to Colab Notebook
  • 4. Perform Data Preprocessing
  • 5. Use ResNet and AlexNet PreTrained Models
  • 6.1 imagenet1000Classes.txt
  • 6.2 pizza.zip
  • 6.3 single-label classification.zip
  • 6. Python Code for Pretrained ResNet and AlexNet.html

  • 7. Transfer Learning with Python
  • 1. Why Transfer Learning
  • 2. Data Augmentation, Dataloaders, and Training Function
  • 3. FineTuning Deep ResNet Model
  • 4. Optimization of ResNet Model HyperParameteres
  • 5. Deep ResNet Model Training
  • 6. Deep ResNet Model as Fixed Feature Extractor
  • 7. Results and Training of Model as Fixed Feature Extractor

  • 8. Deep Learning for Object Detection on Custom Dataset
  • 1. Introduction to Object Detection
  • 2. Overview of CNN, RCNN, Fast RCNN, and Faster RCNN
  • 3. Detectron2 for Ojbect Detection with PyTorch
  • 4. Perform Object Detection using Detectron2 Pretrained Models
  • 5.1 Python and PyTorch Code for Object Detection using Detectron2.zip
  • 5. Python and PyTorch Code for Object Detection using Detectron2.html
  • 6. Custom Dataset for Object Detection
  • 7.1 Balloon Dataset.zip
  • 7. Balloon Dataset.html
  • 8. Train, Evaluate Object Detection Models & Visualizing Results on Custom Dataset
  • 9.1 Python and Pytroch Code for Object Detection On Custom Dataset.zip
  • 9. Python and Pytroch Code for Object Detection On Custom Dataset.html

  • 9. Deep Learning for Video Object Detection
  • 1. What is YOLO
  • 2. How YOLO works for Object Detection
  • 3. YOLOv8 Introduction and Architecture
  • 4. Custom Vehicles Detection Dataset
  • 5. HyperParameters Settings for YOLO8
  • 6. Training YOLO8 on Vehicles Dataset
  • 7. Testing YOLO8 on Videos and Images
  • 8. Calculate Performance Metrics (Precision, Recall, Mean Average Precision mAP)
  • 9. Deploy YOLO8
  • 10.1 TestVideo.zip
  • 10.2 VehiclesDetection Dataset.zip
  • 10.3 vehiclesdetectioncode.zip
  • 10. Resources Videos Vehicles Detection Complete Code and Dataset.html

  • 10. Deep Learning for Pose Estimation with Python
  • 1. Introduction to Pose Estimation.html
  • 2. Pose Estimation and Key Points Detection with Python.html

  • 11. Deep Learning for Instance Segmentation
  • 1. What is Instance Segmentation
  • 2. Deep Learning Architecture Mask RCNN for Instance Segmentation
  • 3. Instance Segmentation PyTorch Facebook Library
  • 4. Custom Dataset for Instance Segmentation
  • 5. Train, Evaluate & Visualize Instance Segmentation on Custom Dataset
  • 6.1 Balloon Dataset.zip
  • 6.2 Python and Pytorch Code of Instance Segmentation on Custom Dataset.zip
  • 6. Resources Code and Dataset for Instance Segmentation.html

  • 12. Deep Learning for Semantic Segmentation
  • 1. Introduction to Semantic Segmentation
  • 2. Semantic Segmentation Real-world Applications
  • 3. Pyramid Scene Parsing Network for Segmentation
  • 4. UNet Architecture for Segmentation
  • 5. Pyramid Attention Network for Segmentation
  • 6. Multi-Task Contextual Network for Segmentation
  • 7. Datasets for Semantic Segmentation
  • 8. Data Annotations Tool for Semantic Segmentation
  • 9.1 TrayDataset for Segmentation.zip
  • 9. Dataset for Semantic Segmentation.html
  • 10. Data Loading with PyTorch Customized Dataset Class
  • 11. Data Augmentation using Albumentations with different Transformations
  • 12. Data Loaders Implementation in Pytorch
  • 13. Performance Metrics (IOU, Pixel Accuracy) for Segmentation Models Evaluation
  • 14. Learn Transfer Learning with Deep Resnet Architecture
  • 15. Encoders for Segmentation in PyTorch
  • 16. Decoders for Segmentation in PyTorch
  • 17. Implement Segmentation Models (UNet, PSPNet, DeepLab, PAN, UNet++)
  • 18. Hyperparameters Optimization of Segmentation Models
  • 19. Training of Segmentation Models
  • 20. Test & Deploy Segmentation Models and Calculate Class-wise IOU, Accuracy, Fscore
  • 21. Visualize Segmentation Results and Generate RGB Output Segmentation Map
  • 22.1 Final Code.zip
  • 22.2 TrayDataset for Segmentation.zip
  • 22. Resources Code and Dataset of Segmentation with Deep Learning.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39373
    حجم: 4748 مگابایت
    مدت زمان: 558 دقیقه
    تاریخ انتشار: 9 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید