وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Deep Learning and Neural Networks with Python Zero to Expert

سرفصل های دوره

Deep Learning with Python for Classification, Semantic and Instance Segmentation, Pose Estimation, and Object Detection


1. Introduction
  • 1. Introduction

  • 2. Introduction to Deep Learning
  • 1. Introduction to Deep Learning vs Machine Learning
  • 2. Building Blocks of Deep Learning - Artificial Neurons

  • 3. Artificial Neural Networks with Python
  • 1. Introduction to Neural Networks.html
  • 2. Perceptron -- Building Block of Neural Networks.html
  • 3. Colab for Writing Python Code

  • 4. Convolutional Neural Networks with Python from Scratch
  • 1. Introduction to Convolutional Neural Networks (CNNs)
  • 2. Coding Convolutional Neural Networks from Scratch with Python
  • 3. Develop CNN with Python and Pytroch Code from Scratch.html
  • 4. Dataset and its Augmentation
  • 5. Pytorch Code for Data Loading and Augmentation.html
  • 6. Hyperparameters Optimization For Convolutional Neural Networks
  • 7. CNN Optimization with Pytorch and Python Code.html
  • 8. Training Convolutional Neural Network from Scratch
  • 9. CNN Training with Python and Pytorch Code.html
  • 10. Validating Convolutional Neural Network on Test Images
  • 11. CNN Testing with Pytorch and Python Code.html
  • 12. Performance Metrics (Accuracy, Precision, Recall, F1 Score) to Evaluate CNNs
  • 13. Visualize Confusion Matrix and Calculate Precision, Recall, and F1 Score
  • 14. Performance Metrics Calculation with Python and Pytorch Code.html
  • 15.1 CNN from Scratch Code.zip
  • 15. Resources Python Code for Convolutional Neural Networks from Scratch.html

  • 5. Deep Convolutional Neural Networks with Python for Image Classification
  • 1. Coding DEEP CNN from Scratch for Image Classification
  • 2. Optimize, Train and Test Deep CNN with Improved Performance
  • 3. Deep CNN Python and Pytroch Code.html

  • 6. Deep Learning Pretrained Models with Python
  • 1. PreTrained Deep Learning Models Importance
  • 2. Deep Learning ResNet and AlexNet Architectures
  • 3. Read Data from Google Drive to Colab Notebook
  • 4. Perform Data Preprocessing
  • 5. Use ResNet and AlexNet PreTrained Models
  • 6.1 imagenet1000Classes.txt
  • 6.2 pizza.zip
  • 6.3 single-label classification.zip
  • 6. Python Code for Pretrained ResNet and AlexNet.html

  • 7. Transfer Learning with Python
  • 1. Why Transfer Learning
  • 2. Data Augmentation, Dataloaders, and Training Function
  • 3. FineTuning Deep ResNet Model
  • 4. Optimization of ResNet Model HyperParameteres
  • 5. Deep ResNet Model Training
  • 6. Deep ResNet Model as Fixed Feature Extractor
  • 7. Results and Training of Model as Fixed Feature Extractor

  • 8. Deep Learning for Object Detection on Custom Dataset
  • 1. Introduction to Object Detection
  • 2. Overview of CNN, RCNN, Fast RCNN, and Faster RCNN
  • 3. Detectron2 for Ojbect Detection with PyTorch
  • 4. Perform Object Detection using Detectron2 Pretrained Models
  • 5.1 Python and PyTorch Code for Object Detection using Detectron2.zip
  • 5. Python and PyTorch Code for Object Detection using Detectron2.html
  • 6. Custom Dataset for Object Detection
  • 7.1 Balloon Dataset.zip
  • 7. Balloon Dataset.html
  • 8. Train, Evaluate Object Detection Models & Visualizing Results on Custom Dataset
  • 9.1 Python and Pytroch Code for Object Detection On Custom Dataset.zip
  • 9. Python and Pytroch Code for Object Detection On Custom Dataset.html

  • 9. Deep Learning for Video Object Detection
  • 1. What is YOLO
  • 2. How YOLO works for Object Detection
  • 3. YOLOv8 Introduction and Architecture
  • 4. Custom Vehicles Detection Dataset
  • 5. HyperParameters Settings for YOLO8
  • 6. Training YOLO8 on Vehicles Dataset
  • 7. Testing YOLO8 on Videos and Images
  • 8. Calculate Performance Metrics (Precision, Recall, Mean Average Precision mAP)
  • 9. Deploy YOLO8
  • 10.1 TestVideo.zip
  • 10.2 VehiclesDetection Dataset.zip
  • 10.3 vehiclesdetectioncode.zip
  • 10. Resources Videos Vehicles Detection Complete Code and Dataset.html

  • 10. Deep Learning for Pose Estimation with Python
  • 1. Introduction to Pose Estimation.html
  • 2. Pose Estimation and Key Points Detection with Python.html

  • 11. Deep Learning for Instance Segmentation
  • 1. What is Instance Segmentation
  • 2. Deep Learning Architecture Mask RCNN for Instance Segmentation
  • 3. Instance Segmentation PyTorch Facebook Library
  • 4. Custom Dataset for Instance Segmentation
  • 5. Train, Evaluate & Visualize Instance Segmentation on Custom Dataset
  • 6.1 Balloon Dataset.zip
  • 6.2 Python and Pytorch Code of Instance Segmentation on Custom Dataset.zip
  • 6. Resources Code and Dataset for Instance Segmentation.html

  • 12. Deep Learning for Semantic Segmentation
  • 1. Introduction to Semantic Segmentation
  • 2. Semantic Segmentation Real-world Applications
  • 3. Pyramid Scene Parsing Network for Segmentation
  • 4. UNet Architecture for Segmentation
  • 5. Pyramid Attention Network for Segmentation
  • 6. Multi-Task Contextual Network for Segmentation
  • 7. Datasets for Semantic Segmentation
  • 8. Data Annotations Tool for Semantic Segmentation
  • 9.1 TrayDataset for Segmentation.zip
  • 9. Dataset for Semantic Segmentation.html
  • 10. Data Loading with PyTorch Customized Dataset Class
  • 11. Data Augmentation using Albumentations with different Transformations
  • 12. Data Loaders Implementation in Pytorch
  • 13. Performance Metrics (IOU, Pixel Accuracy) for Segmentation Models Evaluation
  • 14. Learn Transfer Learning with Deep Resnet Architecture
  • 15. Encoders for Segmentation in PyTorch
  • 16. Decoders for Segmentation in PyTorch
  • 17. Implement Segmentation Models (UNet, PSPNet, DeepLab, PAN, UNet++)
  • 18. Hyperparameters Optimization of Segmentation Models
  • 19. Training of Segmentation Models
  • 20. Test & Deploy Segmentation Models and Calculate Class-wise IOU, Accuracy, Fscore
  • 21. Visualize Segmentation Results and Generate RGB Output Segmentation Map
  • 22.1 Final Code.zip
  • 22.2 TrayDataset for Segmentation.zip
  • 22. Resources Code and Dataset of Segmentation with Deep Learning.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39373
    حجم: 4748 مگابایت
    مدت زمان: 558 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید