1. Introduction to Semantic Segmentation
2. Semantic Segmentation Real-world Applications
3. Pyramid Scene Parsing Network for Segmentation
4. UNet Architecture for Segmentation
5. Pyramid Attention Network for Segmentation
6. Multi-Task Contextual Network for Segmentation
7. Datasets for Semantic Segmentation
8. Data Annotations Tool for Semantic Segmentation
9.1 TrayDataset for Segmentation.zip
9. Dataset for Semantic Segmentation.html
10. Data Loading with PyTorch Customized Dataset Class
11. Data Augmentation using Albumentations with different Transformations
12. Data Loaders Implementation in Pytorch
13. Performance Metrics (IOU, Pixel Accuracy) for Segmentation Models Evaluation
14. Learn Transfer Learning with Deep Resnet Architecture
15. Encoders for Segmentation in PyTorch
16. Decoders for Segmentation in PyTorch
17. Implement Segmentation Models (UNet, PSPNet, DeepLab, PAN, UNet++)
18. Hyperparameters Optimization of Segmentation Models
19. Training of Segmentation Models
20. Test & Deploy Segmentation Models and Calculate Class-wise IOU, Accuracy, Fscore
21. Visualize Segmentation Results and Generate RGB Output Segmentation Map
22.1 Final Code.zip
22.2 TrayDataset for Segmentation.zip
22. Resources Code and Dataset of Segmentation with Deep Learning.html