1. What is Machine Learning.html
2.1 Importing+Libaries+and+modules.txt
2. Installing and importing libraries
3. Introduction to Data Preprocessing.html
4. What is a Dataset.html
5. Downloading dataset
6. Exploring the Dataset
7.1 handling+missing+values.txt
7. Handle missing values and drop unnecessary columns.
8.1 Encode+categorical+variables..txt
8. Encode categorical variables.
9. What is Feature Engineering.html
10.1 Create+new+features..txt
10. Create new features.
11.1 Dropping+unnecessary+columns.txt
11. Dropping unnecessary columns
12.1 bar+plot+code.txt
12. Visualize survival rate by gender
13.1 bar+plot+2.txt
13. Visualize survival rate by class
14.1 visualize+numeric+data.txt
14. Visualize numerical features
15.1 Visualize++the+distribution+of+Age.txt
15. Visualize the distribution of Age
16.1 Visualize+number+of+passengers+in+each+passenger+class.txt
16. Visualize number of passengers in each passenger class
17.1 countplot.txt
17. Visualize number of passengers that survived
18.1 heatmap.txt
18. Visualize the correlation matrix of numerical variables
19.1 Visualize++the+distribution+of++Fare..txt
19. Visualize the distribution of Fare.
20. Data Preparation and Training Model.html
21. What is a Model.html
22.1 define+features.txt
22. Define features and target variable.
23.1 Split+data.txt
23. Split data into training and testing sets.
24.1 Standardize+features.txt
24. Standardize features.
25. What is a logistic regression model..html
26.1 regression+model.txt
26. Train logistic regression model.
27. Making Predictions
28. What is accuracy in machine learning.html
29. What is confusion matrix..html
30. What is is classification report..html
31. What is a Heatmap.html
32.1 evaluate.txt
32. Evaluate the model using accuracy, confusion matrix, and classification report.
33.1 confusion+matrix.txt
33. Visualize the confusion matrix.
34.1 save+model.txt
34. Saving the Model
35.1 load+model.txt
35. Loading the model
36. Improving Understanding of the models prediction
37.1 DECISION+TREES.txt
37. Building a decision tree
38.1 RANDOM+FOREST.txt
38. Building a random forest