وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science Tools: Python, Pandas, Machine Learning, EDA

سرفصل های دوره

Learn Data Science Skills with: Python, Pandas, NumPy, Matplotlib, Seaborn, Machine Learning, Data Prep, and EDA


1. Introduction to Data Science
  • 1. Introduction.html
  • 2. What is Data Science.html
  • 3. Data Science vs. Data Engineering vs. Data Analysis.html
  • 4. Applications of Data Science.html
  • 5. Overview of tools and technologies used in data science..html
  • 6. Basics of statistics for data analysis.html
  • 7. Introduction to Python for Data Science.html
  • 8. Structured vs. Unstructured Data.html

  • 2. Environment Setup
  • 1. Python Installation on Windows
  • 2. What are virtual environments
  • 3. Creating and activating a virtual environment on Windows
  • 4. Python Installation on macOS.html
  • 5. Creating and activating a virtual environment on macOS.html
  • 6. What is Jupyter Notebook.html
  • 7. Installing Pandas and Jupyter Notebook in the Virtual Environment
  • 8. Starting Jupyter Notebook
  • 9. Exploring Jupyter Notebook Server Dashboard Interface
  • 10. Creating a new Notebook
  • 11. Exploring Jupyter Notebook Source and Folder Files
  • 12. Exploring the Notebook Interface

  • 3. Python Fundamentals
  • 1. Python Expressions
  • 2. Python Statements
  • 3. Python Code Comments
  • 4. Python Data Types
  • 5. Casting Data Types
  • 6. Python Variables
  • 7. Python List
  • 8. Python Tuple
  • 9. Python Dictionaries
  • 10. Python Operators
  • 11. Python Conditional Statements
  • 12. Python Loops
  • 13. Python Functions

  • 4. Data Manipulation and visualization with Pandas
  • 1. Overview of Pandas.html
  • 2. Creating a Pandas Series from a List
  • 3. Creating a Pandas Series from a List with Custom Index
  • 4. Creating a pandas series from a Python Dictionary
  • 5. Accessing Data in a Series using the index by label
  • 6. Accessing Data in a Series By position
  • 7. Slicing a Series by Label
  • 8. Creating a DataFrame from a dictionary of lists
  • 9. Creating a DataFrame From a list of dictionaries
  • 10. Accessing data in a DataFrame
  • 11.1 AAPL.csv
  • 11. Download Dataset
  • 12. Loading Dataset into a DataFrame
  • 13. Inspecting the data
  • 14. Data Cleaning
  • 15. Data transformation and analysis
  • 16. Visualizing data

  • 5. Machine Learning Essentials Build and Train a Machine Learning Model
  • 1. What is Machine Learning.html
  • 2.1 Importing+Libaries+and+modules.txt
  • 2. Installing and importing libraries
  • 3. Introduction to Data Preprocessing.html
  • 4. What is a Dataset.html
  • 5. Downloading dataset
  • 6. Exploring the Dataset
  • 7.1 handling+missing+values.txt
  • 7. Handle missing values and drop unnecessary columns.
  • 8.1 Encode+categorical+variables..txt
  • 8. Encode categorical variables.
  • 9. What is Feature Engineering.html
  • 10.1 Create+new+features..txt
  • 10. Create new features.
  • 11.1 Dropping+unnecessary+columns.txt
  • 11. Dropping unnecessary columns
  • 12.1 bar+plot+code.txt
  • 12. Visualize survival rate by gender
  • 13.1 bar+plot+2.txt
  • 13. Visualize survival rate by class
  • 14.1 visualize+numeric+data.txt
  • 14. Visualize numerical features
  • 15.1 Visualize++the+distribution+of+Age.txt
  • 15. Visualize the distribution of Age
  • 16.1 Visualize+number+of+passengers+in+each+passenger+class.txt
  • 16. Visualize number of passengers in each passenger class
  • 17.1 countplot.txt
  • 17. Visualize number of passengers that survived
  • 18.1 heatmap.txt
  • 18. Visualize the correlation matrix of numerical variables
  • 19.1 Visualize++the+distribution+of++Fare..txt
  • 19. Visualize the distribution of Fare.
  • 20. Data Preparation and Training Model.html
  • 21. What is a Model.html
  • 22.1 define+features.txt
  • 22. Define features and target variable.
  • 23.1 Split+data.txt
  • 23. Split data into training and testing sets.
  • 24.1 Standardize+features.txt
  • 24. Standardize features.
  • 25. What is a logistic regression model..html
  • 26.1 regression+model.txt
  • 26. Train logistic regression model.
  • 27. Making Predictions
  • 28. What is accuracy in machine learning.html
  • 29. What is confusion matrix..html
  • 30. What is is classification report..html
  • 31. What is a Heatmap.html
  • 32.1 evaluate.txt
  • 32. Evaluate the model using accuracy, confusion matrix, and classification report.
  • 33.1 confusion+matrix.txt
  • 33. Visualize the confusion matrix.
  • 34.1 save+model.txt
  • 34. Saving the Model
  • 35.1 load+model.txt
  • 35. Loading the model
  • 36. Improving Understanding of the models prediction
  • 37.1 DECISION+TREES.txt
  • 37. Building a decision tree
  • 38.1 RANDOM+FOREST.txt
  • 38. Building a random forest

  • 6. Real World Project Predicting real house prices using machine learning
  • 1.1 import+more+modules.txt
  • 1. Importing Libraries and modules
  • 2.1 load+housing+dataset.txt
  • 2. Loading dataset and creating a dataframe
  • 3. Checking for missing values
  • 4. Dropping column and splitting data
  • 5.1 standardize+features+for+housing+dataset.txt
  • 5. Standardize the features for housing dataframe
  • 6.1 model+training.txt
  • 6. Initialize and train the regression model
  • 7.1 predictions.txt
  • 7. Make predictions on the test set.
  • 8.1 evaluate+housing+model.txt
  • 8. Evaluating the model for the housing dataset.
  • 9.1 predicting++sample+data.txt
  • 9. Predicting a small sample of data
  • 10.1 scatter+plot+for+housing+data.txt
  • 10. Creating scatter plot
  • 11.1 housing+data+barplot.txt
  • 11. Creating a bar plot
  • 12.1 save+housing+model.txt
  • 12. Saving the housing model
  • 13. Loading the housing model

  • 7. Build a Web App House Price Prediction Tool
  • 1. What is Flask.html
  • 2. Installing Flask
  • 3. Installing Visual Studio Code
  • 4. Creating a minimal flask app
  • 5. How to run a flask app
  • 6. Http and Http Methods.html
  • 7. Loading the saved model and scaler into Python file
  • 8. Define the home route
  • 9. Define the prediction route
  • 10. Creating the template
  • 11. Adding a form to the template
  • 12. Displaying predictions and clearing form inputs
  • 13. Testing the prediction tool
  • 14. Exploring deployment and hosting options.html
  • 15. Create a new account on pythonanywhere
  • 16. Creating a new web app in PythonAnywhere
  • 17. Uploading files to Pythonanywhere
  • 18. Creating and activating a virtual environment on PythonAnywhere
  • 19. What is a WSGI File.html
  • 20. Configuring WSGI File
  • 21. Running your app in a cloud hosting environment
  • 22.1 app.zip
  • 22.2 index.html
  • 22.3 model scaler.zip
  • 22. Project files.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39368
    حجم: 2100 مگابایت
    مدت زمان: 481 دقیقه
    تاریخ انتشار: 9 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید