وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science in Python: Regression & Forecasting

سرفصل های دوره

Learn Python for Data Science & Machine Learning, and build regression and forecasting models with hands-on projects


1 - Getting Started
  • 1 - Course Introduction
  • 2 - About This Series
  • 3 - Course Structure Outline
  • 4 - READ ME Important Notes for New Students.html
  • 5 - DOWNLOAD Course Resources.html
  • 5 - Data-Science-in-Python-Regression.pdf
  • 5 - Data-Science-in-Python-Regression.zip
  • 6 - Introducing the Course Project
  • 7 - Setting Expectations
  • 8 - Jupyter Installation Launch

  • 2 - Intro to Data Science
  • 9 - What is Data Science
  • 10 - Data Science Skillset
  • 11 - What is Machine Learning
  • 12 - Common Machine Learning Algorithms
  • 13 - Data Science Workflow
  • 14 - Step 1 Scoping a Project
  • 15 - Step 2 Gathering Data
  • 16 - Step 3 Cleaning Data
  • 17 - Step 4 Exploring Data
  • 18 - Step 5 Modeling Data
  • 19 - Step 6 Sharing Insights
  • 20 - Regression Modeling
  • 21 - Key Takeaways

  • 3 - Regression 101
  • 22 - Regression 101
  • 23 - Goals of Regression
  • 24 - Types of Regression
  • 25 - Regression Modeling Workflow
  • 26 - Key Takeaways

  • 4 - PreModeling Data Prep EDA
  • 27 - EDA for Regression
  • 28 - Exploring the Target
  • 29 - Exploring the Features
  • 30 - ASSIGNMENT Exploring the Target Features
  • 31 - SOLUTION Exploring the Target Features
  • 32 - Linear Relationships Correlation
  • 33 - Linear Relationships in Python
  • 34 - FeatureTarget Relationships
  • 35 - FeatureFeature Relationships
  • 36 - PRO TIP Pairplots Lmplots
  • 37 - ASSIGNMENT Exploring Relationships
  • 38 - SOLUTION Exploring Relationships
  • 39 - Preparing For Modeling
  • 40 - Key Takeaways

  • 5 - Simple Linear Regression
  • 41 - Simple Linear Regression
  • 42 - The Linear Regression Model
  • 43 - Least Squared Error
  • 44 - Linear Regression in Python
  • 45 - Linear Regression in Statsmodels
  • 46 - Interpreting the Model
  • 47 - Making Predictions
  • 48 - RSquared
  • 49 - Hypothesis Tests
  • 50 - The FTest
  • 51 - Coefficient Estimates PValues
  • 52 - Residual Plots
  • 53 - CASE STUDY Modeling Health Insurance Prices
  • 54 - ASSIGNMENT Simple Linear Regression
  • 55 - SOLUTION Simple Linear Regression
  • 56 - Key Takeaways

  • 6 - Multiple Linear Regression
  • 57 - Multiple Linear Regression Equation
  • 58 - Fitting a Multiple Linear Regression
  • 59 - Interpreting Multiple Linear Regression Models
  • 60 - Variable Selection
  • 61 - ASSIGNMENT Multiple Linear Regression
  • 62 - SOLUTION Multiple Linear Regression
  • 63 - Mean Error Metrics
  • 64 - DEMO Mean Error Metrics
  • 65 - Adjusted RSquared
  • 66 - ASSIGNMENT Mean Error Metrics
  • 67 - SOLUTION Mean Error Metrics
  • 68 - Key Takeaways

  • 7 - Model Assumptions
  • 69 - Assumptions of Linear Regression
  • 70 - Linearity
  • 71 - Independence of Errors
  • 72 - Normality of Errors
  • 73 - DEMO Normality of Errors
  • 74 - PRO TIP Interpreting Transformed Targets
  • 75 - No Perfect Multicollinearity
  • 76 - Equal Variance of Errors
  • 77 - Outliers Leverage Influence
  • 78 - RECAP Assumptions of Linear Regression
  • 79 - ASSIGNMENT Model Assumptions
  • 80 - SOLUTION Model Assumptions
  • 81 - Key Takeaways

  • 8 - Model Testing Validation
  • 82 - Model Scoring Steps
  • 83 - Data Splitting
  • 84 - Overfitting Underfitting
  • 85 - The BiasVariance Tradeoff
  • 86 - Validation Data
  • 87 - Model Tuning
  • 88 - Model Scoring
  • 89 - Cross Validation
  • 90 - Simple vs Cross Validation
  • 91 - ASSIGNMENT Model Testing Validation
  • 92 - SOLUTION Model Testing Validation
  • 93 - Key Takeaways

  • 9 - Feature Engineering
  • 94 - Intro To Feature Engineering
  • 95 - Feature Engineering Techniques
  • 96 - Polynomial Terms
  • 97 - Combining Features
  • 98 - Interaction Terms
  • 99 - Categorical Features
  • 100 - Dummy Variables
  • 101 - DEMO Dummy Variables
  • 102 - Binning Categorical Data
  • 103 - Binning Numeric Data
  • 104 - DEMO Additional Feature Engineering Ideas
  • 105 - ASSIGNMENT Feature Engineering
  • 106 - SOLUTION Feature Engineering
  • 107 - Key Takeaways

  • 10 - Project 1 San Francisco Rent Prices
  • 108 - Project Brief
  • 109 - Solution Walkthrough

  • 11 - Regularized Regression
  • 110 - Intro to Regularized Regression
  • 111 - Ridge Regression
  • 112 - Standardization
  • 113 - Fitting a Ridge Regression Model
  • 114 - DEMO Fitting a Ridge Regression
  • 115 - PRO TIP RidgeCV
  • 116 - ASSIGNMENT Ridge Regression
  • 117 - SOLUTION Ridge Regression
  • 118 - Lasso Regression
  • 119 - PRO TIP LassoCV
  • 120 - ASSIGNMENT Lasso Regression
  • 121 - SOLUTION Lasso Regression
  • 122 - Elastic Net Regression
  • 123 - DEMO Fitting an Elastic Net Regression
  • 124 - PRO TIP ElasticNetCV
  • 125 - ASSIGNMENT Elastic Net Regression
  • 126 - SOLUTION Elastic Net Regression
  • 127 - RECAP Regularized Regression Models
  • 128 - PREVIEW Tree Based Models
  • 129 - Key Takeaways

  • 12 - Project 1 San Francisco Rent Prices Continued
  • 130 - Project Brief
  • 131 - Solution Walkthrough

  • 13 - Time Series Analysis
  • 132 - Intro to Time Series
  • 133 - Moving Averages
  • 134 - DEMO Moving Averages
  • 135 - Exponential Smoothing
  • 136 - ASSIGNMENT Smoothing
  • 137 - SOLUTION Smoothing
  • 138 - Decomposition
  • 139 - DEMO Decomposition
  • 140 - PRO TIP Autocorrelation Chart
  • 141 - ASSIGNMENT Decomposition
  • 142 - SOLUTION Decomposition
  • 143 - Forecasting
  • 144 - Linear Regression With Trend Season
  • 145 - DEMO Linear Regression With Trend Season
  • 146 - Facebook Prophet
  • 147 - ASSIGNMENT Forecasting
  • 148 - SOLUTION Forecasting
  • 149 - Key Takeaways

  • 14 - Project 2 Electricity Consumption
  • 150 - Project Brief
  • 151 - Solution Walkthrough

  • 15 - Next Steps
  • 152 - EXTRA LESSON.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 20648
    حجم: 3264 مگابایت
    مدت زمان: 507 دقیقه
    تاریخ انتشار: 15 مهر 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید