وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Amazon Bedrock – The Complete Guide to AWS Generative AI

سرفصل های دوره

Learn to Deploy Scalable, Reliable, and Secure Generative AI Apps Using AWS and Amazon Bedrock (Python and TypeScript)


1 - Course Introduction
  • 1 - How to take this course
  • 2 - Udemy tips
  • 3 - Tools setup

  • 2 - Introduction to Amazon Bedrock
  • 4 - Section intro
  • 5 - What is Amazon Bedrock
  • 6 - Bedrock console overview
  • 7 - AWS configure CLI access
  • 8 - Bedrock API Boto3 Python
  • 8 - Code changes in this lecture.txt
  • 9 - Bedrock API JS SDK TypeScript
  • 9 - Code changes in this lecture.txt
  • 10 - Code changes in this lecture.txt
  • 10 - Optional VSCode debug

  • 3 - Working with text models
  • 11 - Section intro
  • 12 - Amazon Bedrock text models intro
  • 13 - Understanding tokens
  • 14 - Text models parameters
  • 15 - Bedrock text models Python
  • 15 - Code changes in this lecture.txt
  • 16 - Bedrock text models TypeScript
  • 16 - Code changes in this lecture.txt
  • 17 - Code changes in this lecture.txt
  • 17 - Prompt engineering
  • 17 - Prompt engineering docs.txt
  • 18 - Code changes in this lecture.txt
  • 18 - Project ChatBot
  • 19 - ChatBot with History Python
  • 19 - Code changes in this lecture.txt
  • 20 - ChatBot with History TypeScript
  • 20 - Code changes in this lecture.txt

  • 4 - Amazon Bedrock Image models
  • 21 - Section intro
  • 22 - Image models intro
  • 23 - Stability AI parameters
  • 23 - Stability AI params.txt
  • 24 - Code changes in this lecture.txt
  • 24 - Stability AI images Python and TypeScript
  • 25 - Code changes in this lecture.txt
  • 25 - Titan model image generation
  • 26 - Code changes in this lecture.txt
  • 26 - Titan model image editing

  • 5 - Amazon Bedrock embedding models
  • 27 - Section intro
  • 28 - Code changes in this lecture.txt
  • 28 - Embeddings and Similarity
  • 29 - Code changes in this lecture.txt
  • 29 - Embedding models Python and TypeScript
  • 30 - Code changes in this lecture.txt
  • 30 - Text embeddings Python
  • 31 - Code changes in this lecture.txt
  • 31 - Text embeddings TypeScript
  • 32 - Code changes in this lecture.txt
  • 32 - Image embeddings Python
  • 33 - Code changes in this lecture.txt
  • 33 - Image embeddings TypeScript
  • 34 - Vector databases

  • 6 - Halfway discussion
  • 35 - Section intro

  • 7 - Project RAG app local
  • 36 - Section intro
  • 36 - langchain-py.zip
  • 36 - langchain-ts.zip
  • 37 - Langchain intro
  • 38 - Code changes in this lecture.txt
  • 38 - First Chain Python
  • 39 - Code changes in this lecture.txt
  • 39 - First Chain TypeScript
  • 40 - What is a RAG app
  • 41 - Basic RAG app Python
  • 41 - Code changes in this lecture.txt
  • 42 - Basic RAG app TypeScript
  • 42 - Code changes in this lecture.txt
  • 43 - Code changes in this lecture.txt
  • 43 - Document app Python
  • 44 - Code changes in this lecture.txt
  • 44 - Document app TypeScript

  • 8 - Practice Text API
  • 45 - Section intro
  • 46 - Project architecture
  • 47 - Code changes in this lecture.txt
  • 47 - Summary Lambda Python
  • 48 - Code changes in this lecture.txt
  • 48 - Summary Lambda test Python
  • 49 - Code changes in this lecture.txt
  • 49 - Summary Lambda TypeScript
  • 50 - Code changes in this lecture.txt
  • 50 - Summary Lambda test TypeScript
  • 51 - ApiGateway and Lambda integration
  • 51 - Code changes in this lecture.txt
  • 52 - Code changes in this lecture.txt
  • 52 - IAC Summary api CDK Python
  • 53 - Code changes in this lecture.txt
  • 53 - IAC Summary api CDK TypeScript

  • 9 - Practice Image API
  • 54 - Section intro
  • 55 - Project architecture
  • 56 - Code changes in this lecture.txt
  • 56 - Image Lambda Python
  • 57 - Code changes in this lecture.txt
  • 57 - Lambda Test Python
  • 58 - Code changes in this lecture.txt
  • 58 - Image Lambda TypeScript
  • 59 - Code changes in this lecture.txt
  • 59 - Lambda Test TypeScript
  • 60 - ApiGateway and Lambda integration
  • 60 - Code changes in this lecture.txt
  • 61 - Code changes in this lecture.txt
  • 61 - IAC Image api CDK Python
  • 62 - Code changes in this lecture.txt
  • 62 - IAC Image api CDK TS

  • 10 - Practice Bedrock knowledge bases
  • 63 - Section intro
  • 64 - What is Bedrock knowledge base
  • 65 - Bedrock Knowledge base model access
  • 66 - New console account creation
  • 67 - Creating a knowledge base
  • 68 - Code changes in this lecture.txt
  • 68 - RAG Lambda Python
  • 69 - Code changes in this lecture.txt
  • 69 - RAG Lambda TypeScript
  • 70 - Code changes in this lecture.txt
  • 70 - RAG Lambda AWS test
  • 71 - Code changes in this lecture.txt
  • 71 - RAG ApiGateway integration
  • 72 - Resorces deletion

  • 11 - Custom Amazon Bedrock models
  • 73 - Section intro
  • 74 - Fine tuning
  • 75 - Custom models Amazon Bedrock console

  • 12 - Ending section
  • 76 - Thank you

  • 13 - Optional AWS Recap
  • 77 - Section intro
  • 78 - AWS IAM presentation
  • 79 - AWS Lambda presentation
  • 80 - AWS API Gateway presentation

  • 14 - Optional Infrastructure as code
  • 81 - Section intro
  • 82 - AWS CloudFormation
  • 82 - Code changes in this lecture.txt
  • 83 - AWS CDK install
  • 84 - AWS CDK with Python
  • 84 - Code changes in this lecture.txt
  • 85 - AWS CDK with TypeScript
  • 85 - Code changes in this lecture.txt
  • 86 - Cleanup
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38590
    حجم: 4240 مگابایت
    مدت زمان: 446 دقیقه
    تاریخ انتشار: ۲۶ تیر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید