وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science in Python: Regression & Forecasting

سرفصل های دوره

Learn Python for Data Science & Machine Learning, and build regression and forecasting models with hands-on projects


1 - Getting Started
  • 1 - Course Introduction
  • 2 - About This Series
  • 3 - Course Structure Outline
  • 4 - READ ME Important Notes for New Students.html
  • 5 - DOWNLOAD Course Resources.html
  • 5 - Data-Science-in-Python-Regression.pdf
  • 5 - Data-Science-in-Python-Regression.zip
  • 6 - Introducing the Course Project
  • 7 - Setting Expectations
  • 8 - Jupyter Installation Launch

  • 2 - Intro to Data Science
  • 9 - What is Data Science
  • 10 - Data Science Skillset
  • 11 - What is Machine Learning
  • 12 - Common Machine Learning Algorithms
  • 13 - Data Science Workflow
  • 14 - Step 1 Scoping a Project
  • 15 - Step 2 Gathering Data
  • 16 - Step 3 Cleaning Data
  • 17 - Step 4 Exploring Data
  • 18 - Step 5 Modeling Data
  • 19 - Step 6 Sharing Insights
  • 20 - Regression Modeling
  • 21 - Key Takeaways

  • 3 - Regression 101
  • 22 - Regression 101
  • 23 - Goals of Regression
  • 24 - Types of Regression
  • 25 - Regression Modeling Workflow
  • 26 - Key Takeaways

  • 4 - PreModeling Data Prep EDA
  • 27 - EDA for Regression
  • 28 - Exploring the Target
  • 29 - Exploring the Features
  • 30 - ASSIGNMENT Exploring the Target Features
  • 31 - SOLUTION Exploring the Target Features
  • 32 - Linear Relationships Correlation
  • 33 - Linear Relationships in Python
  • 34 - FeatureTarget Relationships
  • 35 - FeatureFeature Relationships
  • 36 - PRO TIP Pairplots Lmplots
  • 37 - ASSIGNMENT Exploring Relationships
  • 38 - SOLUTION Exploring Relationships
  • 39 - Preparing For Modeling
  • 40 - Key Takeaways

  • 5 - Simple Linear Regression
  • 41 - Simple Linear Regression
  • 42 - The Linear Regression Model
  • 43 - Least Squared Error
  • 44 - Linear Regression in Python
  • 45 - Linear Regression in Statsmodels
  • 46 - Interpreting the Model
  • 47 - Making Predictions
  • 48 - RSquared
  • 49 - Hypothesis Tests
  • 50 - The FTest
  • 51 - Coefficient Estimates PValues
  • 52 - Residual Plots
  • 53 - CASE STUDY Modeling Health Insurance Prices
  • 54 - ASSIGNMENT Simple Linear Regression
  • 55 - SOLUTION Simple Linear Regression
  • 56 - Key Takeaways

  • 6 - Multiple Linear Regression
  • 57 - Multiple Linear Regression Equation
  • 58 - Fitting a Multiple Linear Regression
  • 59 - Interpreting Multiple Linear Regression Models
  • 60 - Variable Selection
  • 61 - ASSIGNMENT Multiple Linear Regression
  • 62 - SOLUTION Multiple Linear Regression
  • 63 - Mean Error Metrics
  • 64 - DEMO Mean Error Metrics
  • 65 - Adjusted RSquared
  • 66 - ASSIGNMENT Mean Error Metrics
  • 67 - SOLUTION Mean Error Metrics
  • 68 - Key Takeaways

  • 7 - Model Assumptions
  • 69 - Assumptions of Linear Regression
  • 70 - Linearity
  • 71 - Independence of Errors
  • 72 - Normality of Errors
  • 73 - DEMO Normality of Errors
  • 74 - PRO TIP Interpreting Transformed Targets
  • 75 - No Perfect Multicollinearity
  • 76 - Equal Variance of Errors
  • 77 - Outliers Leverage Influence
  • 78 - RECAP Assumptions of Linear Regression
  • 79 - ASSIGNMENT Model Assumptions
  • 80 - SOLUTION Model Assumptions
  • 81 - Key Takeaways

  • 8 - Model Testing Validation
  • 82 - Model Scoring Steps
  • 83 - Data Splitting
  • 84 - Overfitting Underfitting
  • 85 - The BiasVariance Tradeoff
  • 86 - Validation Data
  • 87 - Model Tuning
  • 88 - Model Scoring
  • 89 - Cross Validation
  • 90 - Simple vs Cross Validation
  • 91 - ASSIGNMENT Model Testing Validation
  • 92 - SOLUTION Model Testing Validation
  • 93 - Key Takeaways

  • 9 - Feature Engineering
  • 94 - Intro To Feature Engineering
  • 95 - Feature Engineering Techniques
  • 96 - Polynomial Terms
  • 97 - Combining Features
  • 98 - Interaction Terms
  • 99 - Categorical Features
  • 100 - Dummy Variables
  • 101 - DEMO Dummy Variables
  • 102 - Binning Categorical Data
  • 103 - Binning Numeric Data
  • 104 - DEMO Additional Feature Engineering Ideas
  • 105 - ASSIGNMENT Feature Engineering
  • 106 - SOLUTION Feature Engineering
  • 107 - Key Takeaways

  • 10 - Project 1 San Francisco Rent Prices
  • 108 - Project Brief
  • 109 - Solution Walkthrough

  • 11 - Regularized Regression
  • 110 - Intro to Regularized Regression
  • 111 - Ridge Regression
  • 112 - Standardization
  • 113 - Fitting a Ridge Regression Model
  • 114 - DEMO Fitting a Ridge Regression
  • 115 - PRO TIP RidgeCV
  • 116 - ASSIGNMENT Ridge Regression
  • 117 - SOLUTION Ridge Regression
  • 118 - Lasso Regression
  • 119 - PRO TIP LassoCV
  • 120 - ASSIGNMENT Lasso Regression
  • 121 - SOLUTION Lasso Regression
  • 122 - Elastic Net Regression
  • 123 - DEMO Fitting an Elastic Net Regression
  • 124 - PRO TIP ElasticNetCV
  • 125 - ASSIGNMENT Elastic Net Regression
  • 126 - SOLUTION Elastic Net Regression
  • 127 - RECAP Regularized Regression Models
  • 128 - PREVIEW Tree Based Models
  • 129 - Key Takeaways

  • 12 - Project 1 San Francisco Rent Prices Continued
  • 130 - Project Brief
  • 131 - Solution Walkthrough

  • 13 - Time Series Analysis
  • 132 - Intro to Time Series
  • 133 - Moving Averages
  • 134 - DEMO Moving Averages
  • 135 - Exponential Smoothing
  • 136 - ASSIGNMENT Smoothing
  • 137 - SOLUTION Smoothing
  • 138 - Decomposition
  • 139 - DEMO Decomposition
  • 140 - PRO TIP Autocorrelation Chart
  • 141 - ASSIGNMENT Decomposition
  • 142 - SOLUTION Decomposition
  • 143 - Forecasting
  • 144 - Linear Regression With Trend Season
  • 145 - DEMO Linear Regression With Trend Season
  • 146 - Facebook Prophet
  • 147 - ASSIGNMENT Forecasting
  • 148 - SOLUTION Forecasting
  • 149 - Key Takeaways

  • 14 - Project 2 Electricity Consumption
  • 150 - Project Brief
  • 151 - Solution Walkthrough

  • 15 - Next Steps
  • 152 - EXTRA LESSON.html
  • 179,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 20648
    حجم: 3264 مگابایت
    مدت زمان: 507 دقیقه
    تاریخ انتشار: ۱۵ مهر ۱۴۰۲
    طراحی سایت و خدمات سئو

    179,000 تومان
    افزودن به سبد خرید