وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

PyTorch: Deep Learning and Artificial Intelligence

سرفصل های دوره

Neural Networks for Computer Vision, Time Series Forecasting, NLP, GANs, Reinforcement Learning, and More!


1. Introduction
  • 1. Welcome
  • 2. Overview and Outline

  • 2. Getting Set Up
  • 1.1 Data Links.html
  • 1.2 Github Link.html
  • 1. Get Your Hands Dirty, Practical Coding Experience, Data Links
  • 2. How to use Github & Extra Coding Tips (Optional)
  • 3.1 Code Link.html
  • 3.2 Data Links.html
  • 3.3 Github Link.html
  • 3. Where to get the code, notebooks, and data
  • 4. How to Succeed in This Course
  • 5. Temporary 403 Errors

  • 3. Google Colab
  • 1. Intro to Google Colab, how to use a GPU or TPU for free
  • 2. Uploading your own data to Google Colab
  • 3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn

  • 4. Machine Learning and Neurons
  • 1. What is Machine Learning
  • 2. Regression Basics
  • 3. Regression Code Preparation
  • 4. Regression Notebook
  • 5. Moores Law
  • 6. Moores Law Notebook
  • 7. Linear Classification Basics
  • 8. Classification Code Preparation
  • 9. Classification Notebook
  • 10. Saving and Loading a Model
  • 11. A Short Neuroscience Primer
  • 12. How does a model learn
  • 13. Model With Logits
  • 14. Train Sets vs. Validation Sets vs. Test Sets
  • 15. Suggestion Box

  • 5. Feedforward Artificial Neural Networks
  • 1. Artificial Neural Networks Section Introduction
  • 2. Forward Propagation
  • 3. The Geometrical Picture
  • 4. Activation Functions
  • 5. Multiclass Classification
  • 6. How to Represent Images
  • 7. Color Mixing Clarification
  • 8. Code Preparation (ANN)
  • 9. ANN for Image Classification
  • 10. ANN for Regression
  • 11. How to Choose Hyperparameters

  • 6. Convolutional Neural Networks
  • 1. What is Convolution (part 1)
  • 2. What is Convolution (part 2)
  • 3. What is Convolution (part 3)
  • 4. Convolution on Color Images
  • 5. CNN Architecture
  • 6. CNN Code Preparation (part 1)
  • 7. CNN Code Preparation (part 2)
  • 8. CNN Code Preparation (part 3)
  • 9. CNN for Fashion MNIST
  • 10. CNN for CIFAR-10
  • 11. Data Augmentation
  • 12. Batch Normalization
  • 13. Improving CIFAR-10 Results

  • 7. Recurrent Neural Networks, Time Series, and Sequence Data
  • 1. Sequence Data
  • 2. Forecasting
  • 3. Autoregressive Linear Model for Time Series Prediction
  • 4. Proof that the Linear Model Works
  • 5. Recurrent Neural Networks
  • 6. RNN Code Preparation
  • 7. RNN for Time Series Prediction
  • 8. Paying Attention to Shapes
  • 9. GRU and LSTM (pt 1)
  • 10. GRU and LSTM (pt 2)
  • 11. A More Challenging Sequence
  • 12. RNN for Image Classification (Theory)
  • 13. RNN for Image Classification (Code)
  • 14. Stock Return Predictions using LSTMs (pt 1)
  • 15. Stock Return Predictions using LSTMs (pt 2)
  • 16. Stock Return Predictions using LSTMs (pt 3)
  • 17. Other Ways to Forecast

  • 8. Natural Language Processing (NLP)
  • 1. Embeddings
  • 2. Neural Networks with Embeddings
  • 3. Text Preprocessing Concepts
  • 4.1 Why bad programmers always need the latest version.html
  • 4. Beginner Blues - PyTorch NLP Version
  • 5. (Legacy) Text Preprocessing Code Preparation
  • 6. (Legacy) Text Preprocessing Code Example
  • 7. Text Classification with LSTMs (V2)
  • 8. CNNs for Text
  • 9. Text Classification with CNNs (V2)
  • 10. (Legacy) VIP Making Predictions with a Trained NLP Model
  • 11. VIP Making Predictions with a Trained NLP Model (V2)

  • 9. Recommender Systems
  • 1. Recommender Systems with Deep Learning Theory
  • 2. Recommender Systems with Deep Learning Code Preparation
  • 3. Recommender Systems with Deep Learning Code (pt 1)
  • 4. Recommender Systems with Deep Learning Code (pt 2)
  • 5. VIP Making Predictions with a Trained Recommender Model

  • 10. Transfer Learning for Computer Vision
  • 1. Transfer Learning Theory
  • 2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet)
  • 3. Large Datasets
  • 4. 2 Approaches to Transfer Learning
  • 5. Transfer Learning Code (pt 1)
  • 6. Transfer Learning Code (pt 2)

  • 11. GANs (Generative Adversarial Networks)
  • 1. GAN Theory
  • 2. GAN Code Preparation
  • 3. GAN Code

  • 12. Deep Reinforcement Learning (Theory)
  • 1. Deep Reinforcement Learning Section Introduction
  • 2. Elements of a Reinforcement Learning Problem
  • 3. States, Actions, Rewards, Policies
  • 4. Markov Decision Processes (MDPs)
  • 5. The Return
  • 6. Value Functions and the Bellman Equation
  • 7. What does it mean to learn
  • 8. Solving the Bellman Equation with Reinforcement Learning (pt 1)
  • 9. Solving the Bellman Equation with Reinforcement Learning (pt 2)
  • 10. Epsilon-Greedy
  • 11. Q-Learning
  • 12. Deep Q-Learning DQN (pt 1)
  • 13. Deep Q-Learning DQN (pt 2)
  • 14. How to Learn Reinforcement Learning

  • 13. Stock Trading Project with Deep Reinforcement Learning
  • 1. Reinforcement Learning Stock Trader Introduction
  • 2. Data and Environment
  • 3. Replay Buffer
  • 4. Program Design and Layout
  • 5. Code pt 1
  • 6. Code pt 2
  • 7. Code pt 3
  • 8. Code pt 4
  • 9. Reinforcement Learning Stock Trader Discussion

  • 14. VIP Uncertainty Estimation
  • 1. Custom Loss and Estimating Prediction Uncertainty
  • 2. Estimating Prediction Uncertainty Code

  • 15. VIP Facial Recognition
  • 1. Facial Recognition Section Introduction
  • 2. Siamese Networks
  • 3. Code Outline
  • 4. Loading in the data
  • 5. Splitting the data into train and test
  • 6. Converting the data into pairs
  • 7. Generating Generators
  • 8. Creating the model and loss
  • 9. Accuracy and imbalanced classes
  • 10. Facial Recognition Section Summary

  • 16. In-Depth Loss Functions
  • 1. Mean Squared Error
  • 2. Binary Cross Entropy
  • 3. Categorical Cross Entropy

  • 17. In-Depth Gradient Descent
  • 1. Gradient Descent
  • 2. Stochastic Gradient Descent
  • 3. Momentum
  • 4. Variable and Adaptive Learning Rates
  • 5. Adam (pt 1)
  • 6. Adam (pt 2)

  • 18. Extras
  • 1. Where Are The Exercises

  • 19. Setting up your Environment (FAQ by Student Request)
  • 1. Pre-Installation Check
  • 2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
  • 3. Anaconda Environment Setup
  • 4. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer

  • 20. Extra Help With Python Coding for Beginners (FAQ by Student Request)
  • 1. Beginners Coding Tips
  • 2. How to Code Yourself (part 1)
  • 3. How to Code Yourself (part 2)
  • 4. Proof that using Jupyter Notebook is the same as not using it

  • 21. Effective Learning Strategies for Machine Learning (FAQ by Student Request)
  • 1. How to Succeed in this Course (Long Version)
  • 2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced
  • 3. Machine Learning and AI Prerequisite Roadmap (pt 1)
  • 4. Machine Learning and AI Prerequisite Roadmap (pt 2)

  • 22. Appendix FAQ Finale
  • 1. What is the Appendix
  • 2. BONUS
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 27731
    حجم: 8101 مگابایت
    مدت زمان: 1459 دقیقه
    تاریخ انتشار: ۲۸ آذر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید