وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Machine Learning & Deep Learning in One Semester

سرفصل های دوره

Practical Oriented Explanations by solving more than 80 projects with Numpy, Scikit-learn, Pandas, Matplotlib, Pytorch.


1. Introduction and Course Material
  • 1. Introduction of the course
  • 2.1 Course Material.zip
  • 2. Course Material.html

  • 2. Introduction to Machine Learning and Deep Learning
  • 1. Introduction of the Section
  • 2. What in Intelligence
  • 3. Machine Learning
  • 4. Supervised Machine Learning
  • 5.1 5-Unsupervised Machine Learning
  • 5. Unsupervised Machine Learning
  • 6. Deep Learning

  • 3. Introduction to Google Colab
  • 1. Introduction of the Section
  • 2. Importing Dataset in Google Colab
  • 3. Importing and Displaying Image in Google Colab
  • 4. Importing more datasets
  • 5. Uploading Course Material on your Google Drive

  • 4. Python Crash Course
  • 1. Introduction of the Section
  • 2. Arithmetic With Python
  • 3. Comparison and Logical Operations
  • 4. Conditional Statements
  • 5. Dealing With Numpy Arrays-Part01
  • 6. Dealing With Numpy Arrays-Part02
  • 7. Dealing With Numpy Arrays-Part03
  • 8. Plotting and Visualization-Part01
  • 9. Plotting and Visualization-Part02
  • 10. Plotting and Visualization-Part03
  • 11. Plotting and Visualization-Part04
  • 12. Lists in Python
  • 13. For Loops-Part01
  • 14. For Loops-Part02
  • 15. Strings
  • 16. Print Formatting With Strings
  • 17. Dictionaries-Part01
  • 18. Dictionaries-Part02
  • 19. Functions in Python-Part01
  • 20. Functions in Python-Part02
  • 21. Pandas-Part01
  • 22. Pandas-Part02
  • 23. Pandas-Part03
  • 24. Pandas-Part04
  • 25. Seaborn-Part01
  • 26. Seaborn-Part02
  • 27. Seaborn-Part03
  • 28. Tuples
  • 29. Classes in Python

  • 5. Data Preprocessing
  • 1. Introduction of the Section
  • 2. Need of Data Preprocessing
  • 3. Data Normalization and Min-Max Scaling
  • 4. Project01-Data Normalization and Min-Max Scaling-Part01
  • 5. Project01-Data Normalization and Min-Max Scaling-Part02
  • 6. Data Standardization
  • 7. Project02-Data Standardization
  • 8. Project03-Dealing With Missing Values
  • 9. Project04-Dealing With Categorical Features
  • 10. Project05-Feature Engineering
  • 11. Project06-Feature Engineering by Window Method

  • 6. Supervised Machine Learning
  • 1. Supervised Machine Learning

  • 7. Regression Analysis
  • 1. Introduction of the Section
  • 2. Origin of the Regression
  • 3. Definition of Regression
  • 4. Requirement from Regression
  • 5. Simple Linear Regression
  • 6. Multiple Linear Regression
  • 7. Target and Predicted Values
  • 8. Loss Function
  • 9. Regression With Least Square Method
  • 10. Least Square Method With Numerical Example
  • 11. Evaluation Metrics for Regression
  • 12. Project01-Simple Regression-Part01
  • 13. Project01-Simple Regression-Part02
  • 14. Project01-Simple Regression-Part03
  • 15. Project02-Multiple Regression-Part01
  • 16. Project02-Multiple Regression-Part02
  • 17. Project02-Multiple Regression-Part03
  • 18. Project03-Another Multiple Regression
  • 19. Regression by Gradient Descent
  • 20. Project04-Simple Regression With Gradient Descent
  • 21. Project05-Multiple Regression With Gradient Descent
  • 22. Polynomial Regression
  • 23. Project06-Polynomial Regression
  • 24. Cross-validation
  • 25. Project07-Cross-validation
  • 26. Underfitting and Overfitting ( Bias-Variance Tradeoff )
  • 27. Concept of Regularization
  • 28. Ridge Regression OR L2 Regularization
  • 29. Lasso Regression OR L1 Regularization
  • 30. Comparing Ridge and Lasso Regression
  • 31. Elastic Net Regularization
  • 32. Project08-Regularizations
  • 33. Grid search Cross-validation
  • 34. Project09-Grid Search Cross-validation

  • 8. Logistic Regression
  • 1. Introduction of the Section
  • 2. Fundamentals of Logistic Regression
  • 3. Limitations of Regression Models
  • 4. Transforming Linear Regression into Logistic Regression
  • 5. Project01-Getting Class Probabilities-Part01
  • 6. Project01-Getting Class Probabilities-Part02
  • 7. Loss Function
  • 8. Model Evaluation-Confusion Matrix
  • 9. Accuracy, Precision, Recall and F1-Score
  • 10. ROC Curves and Area Under ROC
  • 11. Project02-Evaluating Logistic Regression Model
  • 12. Project03-Cross-validation With Logistic Regression Model
  • 13. Project04-Multiclass Classification
  • 14. Project05-Classification With Challenging Dataset-Part01
  • 15. Project05-Classification With Challenging Dataset-Part02
  • 16. Project05-Classification With Challenging Dataset-Part03
  • 17. Grid Search Cross-validation With Logistic Regression

  • 9. K-Nearest Neighbors ( KNN )
  • 1. Introduction of the Section
  • 2. Intuition Behind KNN
  • 3. Steps of KNN Algorithm
  • 4. Numerical Example on KNN Algorithm
  • 5. Project01-KNN Algorithm-Part01
  • 6. Project01-KNN Algorithm-Part02
  • 7. Finding Optimal Value of K
  • 8. Project02-Implementing KNN
  • 9. Project03-Implementing KNN
  • 10. Project04-Implementing KNN
  • 11. Advantages and disadvantages of KNN

  • 10. Bayes Theorem and Naive Bayes Classifier
  • 1. Introduction of the section
  • 2. Fundamentals of Probability
  • 3. Conditional Probability and Bayes Theorem
  • 4. Numerical Example on Bayes Theorem
  • 5. Naive Bayes Classification
  • 6. Comparing Naive Bayes Classification With Logistic Regression
  • 7. Project01 Naive Bayes as probabilistic classifier
  • 8. Project02 Comparing Naive Bayes and Logistic Regression
  • 9. Project03 Multiclass Classification With Naive Bayes Classifier

  • 11. Support Vector Machines ( SVM )
  • 1. Introduction of the Section
  • 2. Basic Concept of SVM
  • 3. Maths of SVM
  • 4. Hard and Soft Margin Classifier
  • 5. Decision rules of SVM
  • 6. Kernel trick in SVM
  • 7. Project01-Understanding SVM-Part01
  • 8. Project01-Understanding SVM-Part02
  • 9. Project02-Multiclass Classification With SVM
  • 10. Project03-Grid Search CV-Part01
  • 11. Project03-Grid Search CV-Part02
  • 12. Project04-Breast Cancer Classification with SVM

  • 12. Decision Tree
  • 1. Introduction of the Section
  • 2. Concept of Decision Tree
  • 3. Important terms related to decision tree
  • 4. Entropy-An information gain criterion
  • 5. Numerical Example on Entropy-Part01
  • 6. Numerical Example on Entropy-Part02
  • 7. Gini Impurity - An information criterion
  • 8. Numerical Example on Gini Impurity
  • 9. Project01-Decision Tree Implementation
  • 10. Project02-Breast Cancer Classification With Decision Tree
  • 11. Project03-Grid Search CV with Decision Tree

  • 13. Random Forest
  • 1. Introduction of the Section
  • 2. Why Random Forest
  • 3. Working of Random Forest
  • 4. Hyperparameters of Random Forest
  • 5. Bootstrap sampling and OOB Error
  • 6. Project01-Random Forest-Part01
  • 7. Project01-Random Forest-Part02
  • 8. Project02-Random Forest-Part01
  • 9. Project02-Random Forest-Part02

  • 14. Boosting Methods in Machine Learning
  • 1. Introduction of the Section
  • 2. AdaBoost (Adaptive Boosting )
  • 3. Numerical Example on Adaboost
  • 4. Project01-AdaBoost Classifier
  • 5. Project02-AdaBoost Classifier
  • 6. Gradient Boosting
  • 7. Numerical Example on Gradient Boosting
  • 8. Project03-Gradient Boosting
  • 9. Project04-Gradient Boosting
  • 10. Extreme Gradient Boosting ( XGBoost )
  • 11. Project05-XGBoost-Part01
  • 12. Project05-XGBoost-Part02

  • 15. Deep Learning
  • 1. Deep Learning

  • 16. Introduction to Neural Networks and Deep Learning
  • 1. Introduction of the Section
  • 2. The perceptron
  • 3. Features, Weights and Activation Function
  • 4. Learning of Neural Network
  • 5. Rise of Deep Learning

  • 17. Activation Functions
  • 1. Introduction of the Section
  • 2. Classification by Perceptron-Part01
  • 3. Classification by Perceptron-Part02
  • 4. Need of Activation Functions
  • 5. Adding Activation Function to Neural Network
  • 6. Sigmoid as Activation Function
  • 7. Hyperbolic Tangent Function
  • 8. ReLU and Leaky ReLU Function

  • 18. Loss Functions
  • 1. Introduction of the Section
  • 2. MSE Loss Function
  • 3. Cross Entropy Loss Function
  • 4. Softmax Function

  • 19. Back Propagation
  • 1. Introduction of the Section
  • 2. Forward Propagation
  • 3. Backward Propagation-Part01
  • 4. Backward Propagation-Part02

  • 20. Neural Networks for Regression Analysis
  • 1. Introduction of the Section
  • 2. Project01-Neural Network for Simple Regression-Part01
  • 3. Project01-Neural Network for Simple Regression-Part02
  • 4. Project02 Neural Network for Multiple Regression
  • 5. Creating Neural Network Using Python Class

  • 21. Neural Networks for Classification
  • 1. Introduction of the Section
  • 2. Epoch, Batch size and Iteration
  • 3. Project00 Tensor Dataset and Data Loader
  • 4. Code Preparation for Iris Dataset
  • 5. Project01 Neural Network for Iris Data Classification
  • 6. Code Preparation for MNIST dataset
  • 7. Project02 Neural Network for MNIST data classification-Part01
  • 8. Project02 Neural Network for MNIST data classification-Part02
  • 9. Save and Load Trained model
  • 10. Code Preparation for Custom Images
  • 11. Project03-Neural Networks for Custom Images
  • 12. Code Preparation for Human Action Recognition
  • 13. Project04-Neural Network for Human Action Recognition
  • 14. Project05-Neural Network for Feature Engineered Dataset

  • 22. Dropout Regularization and Batch Normalization
  • 1. Introduction of the Section
  • 2. Dropout Regularization
  • 3. Introducing Dataset for dropout Regularization
  • 4. Project01-Dropout Regularization
  • 5. Project02-Dropout Regularization
  • 6. Batch Normalization
  • 7. Project03-Batch Normalization
  • 8. Project04-Batch Normalization

  • 23. Convolutional Neural Network ( CNN )
  • 1. Introduction of the Section
  • 2. CNN Architecture and main operations
  • 3. 2D Convolution
  • 4. Shape of Feature Map after Convolution
  • 5. Average and Maximum Pooling
  • 6. Pooling to Classification
  • 7. Project01-CNN on MNIST-Part01
  • 8. Project01-CNN on MNIST-Part02
  • 9. An Efficient Lazy Linear Layer
  • 10. Project02 CNN on Custom Images
  • 11. Transfer Learning
  • 12. Project03-Transfer Learning With ResNet-18
  • 13. Project04-Transfer Learning With VGG-16

  • 24. Recurrent Neural Networks ( RNN )
  • 1. Introduction of the Section
  • 2. Why we need RNN
  • 3. Sequential data
  • 4. ANN to RNN
  • 5. Back Propagation Through Time
  • 6. Long-Short Term Memory ( LSTM )
  • 7. LSTM Gates
  • 8. Project01-LSTM Shapes
  • 9. Project02-LSTM Basics
  • 10. Batch size, Sequence length and Feature dimension
  • 11. Project03-Interpolation and Extrapolation With LSTM
  • 12. Project04- Data classification with LSTM

  • 25. Autoencoders
  • 1. Introduction of the Section
  • 2. Architecture of Autoencoder
  • 3. Applications of Autoencoders
  • 4. Project01-Image Denoising using Autoencoder
  • 5. Project02-Occlusion Removing Using Autoencoder
  • 6. Project03-Autoencoder as an Image Classifier

  • 26. Generative Adversarial Networks (GANs)
  • 1. Introduction of the Section
  • 2. Discriminative and Generative Models
  • 3. Training of GAN
  • 4. Project01 GAN Implementation

  • 27. Unsupervised Machine Learning
  • 1. Unsupervised Machine Learning

  • 28. K-Means Clustering
  • 1. Introduction of the Section
  • 2. Steps of K-Means Clustering
  • 3. Numerical Example- K-Means Clustering in One-D
  • 4. Numerical Example-K-Means Clustering in 2D
  • 5. Objective Function of K-Means Clustering
  • 6. Selecting Optimal Number of Clusters ( Elbow Method )
  • 7. Evaluating Metric for K-Means Clustering
  • 8. Project01-K-Means Clustering-Part01
  • 9. Project01-K-Means Clustering-Part02
  • 10. Project01-K-Means Clustering-Part03
  • 11. Project02-K-Means Clustering
  • 12. Project03-K-Means Clustering

  • 29. Hierarchical Clustering
  • 1. Introduction of the Section
  • 2. Hierarchical Clustering Algorithm
  • 3. Hierarchical Clustering in One-D
  • 4. Dendrograms-Selecting Optimal Clusters-Part01
  • 5. Dendrograms-Selecting Optimal Clusters-Part02
  • 6. Hierarchical Clustering Using d-max criterion
  • 7. Hierarchical Clustering in 2D
  • 8. Evaluating Metrics for Hierarchical Clustering
  • 9. Project01-Hierarchical Clustering-Part01
  • 10. Project01-Hierarchical Clustering-Part02
  • 11. Project02-Hierarchical Clustering
  • 12. Project03-Hierarchical Clustering

  • 30. Density Based Spatial Clustering of Applications With Noise (DBSCAN)
  • 1. Introduction of the Section
  • 2. Definition of DBSCAN
  • 3. Step by step DBSCAN
  • 4. Comparing DBSCAN with K-Means Clustering
  • 5. Project01-Part01
  • 6. Project01-Part02
  • 7. Parameters of DBSCAN
  • 8. Project02-DBSCAN

  • 31. Gaussian Mixture Model (GMM) Clustering
  • 1. Introduction of the Section
  • 2. Definition of GMM Clustering
  • 3. Limitations of K-Means Clustering
  • 4. Project01-GMM Clustering
  • 5. Project02-GMM Clustering
  • 6. Project03-GMM Clustering
  • 7. Binomial Distribution
  • 8. Expectation Maximization (EM) Algorithm
  • 9. Expectation Maximization (EM) Algorithm ( Numerical Example )

  • 32. Principal Component Analysis (PCA)
  • 1. Introduction of the Section
  • 2. Key Concepts of PCA
  • 3. Need of PCA
  • 4. PCA Algorithm With Numerical Example
  • 5. Project01-PCA
  • 6. Project02-PCA
  • 7. Project03-PCA
  • 8. Project04-PCA
  • 9. Project05-PCA
  • 10. Project06-PCA
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 20772
    حجم: 17347 مگابایت
    مدت زمان: 2810 دقیقه
    تاریخ انتشار: ۱۵ مهر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید