وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python and R for Machine Learning & Deep Learning

سرفصل های دوره

Learn Machine Learning and Deep Learning using Python and R in 2024


1. Introduction
  • 1. Overview

  • 2. Python & Jupyter Notebook - Essentials
  • 1. Installing Python & Anaconda
  • 2. Jupyter Overview
  • 3. Python Basics
  • 4. Python Basics 2
  • 5. Python Basics 3
  • 6. Numpy
  • 7. Pandas
  • 8. Seaborn

  • 3. R Studio & R Crash
  • 1. Installing R & Studio
  • 2. R & R Studio - Basics
  • 3. Packages in R
  • 4. Inbuilt datasets of R
  • 5. Manual data entry
  • 6. Importing from CSV or Text files
  • 7. Barplots
  • 8. Histograms

  • 4. Statistics - Basics
  • 1. Types of Data
  • 2. Types of Statistics
  • 3. Describing data Graphically
  • 4. Measures of Centers
  • 5. Measures of Dispersion

  • 5. Machine Learning
  • 1. Introduction to Machine Learning
  • 2. Building a Machine Learning Model
  • 3. Gathering Business Knowledge
  • 4. Data Exploration
  • 5. Dataset & Data Dictionary
  • 6. Importing Data in Python
  • 7. Importing the dataset into R
  • 8. Univariate analysis and EDD
  • 9. EDD in Python
  • 10. EDD in R
  • 11. Outlier Treatment
  • 12. Outlier Treatment in Python
  • 13. Outlier Treatment in R
  • 14. Missing Value Imputation
  • 15. Missing Value Imputation in Python
  • 16. Missing Value imputation in R
  • 17. Seasonality in Data
  • 18. Bi-variate analysis and Variable transformation
  • 19. Variable transformation and deletion in Python
  • 20. Variable transformation in R
  • 21. Non-usable variables
  • 22. Dummy variable creation Handling qualitative data
  • 23. Dummy variable creation in Python
  • 24. Dummy variable creation in R
  • 25. Correlation Analysis
  • 26. Correlation Analysis in Python
  • 27. Correlation Matrix in R
  • 28. The Problem Statement
  • 29. Basic Equations and Ordinary Least Squares (OLS) method
  • 30. Assessing accuracy of predicted coefficients
  • 31. Assessing Model Accuracy RSE and R squared
  • 32. Simple Linear Regression in Python
  • 33. Simple Linear Regression in R
  • 34. Multiple Linear Regression
  • 35. The F - statistic
  • 36. Interpreting results of Categorical variables
  • 37. Multiple Linear Regression in Python
  • 38. Multiple Linear Regression in R
  • 39. Test-train split
  • 40. Bias Variance trade-off
  • 41. Test train split in Python
  • 42. Test-Train Split in R
  • 43. Regression models other than OLS
  • 44. Subset selection techniques
  • 45. SubShrinkage methods Ridge and Lassoset selection in R
  • 46. Ridge regression and Lasso in Python
  • 47. Heteroscedasticity
  • 48. Ridge Regression and Lasso in R
  • 49. importing the data into Python
  • 50. Importing the data into R
  • 51. Three Classifiers and the Problem statement
  • 52. Why cant we use Linear Regression
  • 53. Logistic Regression
  • 54. Training a Simple Logistic Model in Python
  • 55. Training a Simple Logistic model in R
  • 56. Result of Simple Logistic Regression
  • 57. Logistic with multiple predictors
  • 58. Training multiple predictor Logistic model in Python
  • 59. Training multiple predictor Logistic model in R
  • 60. Confusion Matrix
  • 61. Creating Confusion Matrix in Python
  • 62. Evaluating performance of model
  • 63. Evaluating model performance in Python
  • 64. Predicting probabilities, assigning classes and making Confusion Matrix in R
  • 65. Linear Discriminant Analysis
  • 66. LDA in Python
  • 67. Linear Discriminant Analysis in R
  • 68. Test-Train Split
  • 69. Test-Train Split in Python
  • 70. Test-Train Split in R
  • 71. K-Nearest Neighbors classifier
  • 72. K-Nearest Neighbors in Python Part 1
  • 73. K-Nearest Neighbors in Python Part 2
  • 74. K-Nearest Neighbors in R
  • 75. Understanding the results of classification models
  • 76. Summary of the three models
  • 77. Basics of Decision Trees
  • 78. Understanding a Regression Tree
  • 79. Stopping criteria for controlling tree growth
  • 80. Importing the Data set into Python
  • 81. Importing the Data set into R
  • 82. Missing value treatment in Python
  • 83. Dummy Variable creation in Python
  • 84. Dependent- Independent Data split in Python
  • 85. Test-Train split in Python
  • 86. Splitting Data into Test and Train Set in R
  • 87. Creating Decision tree in Python
  • 88. Building a Regression Tree in R
  • 89. Evaluating model performance in Python
  • 90. Plotting decision tree in Python
  • 91. Pruning a tree
  • 92. Pruning a tree in Python
  • 93. Pruning a Tree in R
  • 94. Ensemble technique 1 - Bagging
  • 95. Ensemble technique 1 - Bagging in Python
  • 96. Bagging in R
  • 97. Ensemble technique 2 - Random Forests
  • 98. Ensemble technique 2 - Random Forests in Python
  • 99. Using Grid Search in Python
  • 100. Random Forest in R
  • 101. Boosting
  • 102. Ensemble technique 3a - Boosting in Python
  • 103. Gradient Boosting in R
  • 104. Ensemble technique 3b - AdaBoost in Python
  • 105. AdaBoosting in R
  • 106. Ensemble technique 3c - XGBoost in Python
  • 107. XGBoosting in R
  • 108. Content Flow
  • 109. Concept of a Hyperplane
  • 110. Maximum Margin Classifier
  • 111. Limitations of Maximum Margin Classifier
  • 112. Support Vector classifiers
  • 113. Limitations of Support Vector Classifiers
  • 114. Kernel Based Support Vector Machines
  • 115. Regression and Classification Models
  • 116. Importing and preprocessing data in Python
  • 117. Standardizing the data
  • 118. SVM based Regression Model in Pytho
  • 119. Classification model - Preprocessing
  • 120. Classification model - Standardizing the data
  • 121. SVM Based classification model
  • 122. Hyper Parameter Tuning
  • 123. Polynomial Kernel with Hyperparameter Tuning
  • 124. Radial Kernel with Hyperparameter Tuning
  • 125. Importing and preprocessing data in R
  • 126. Classification SVM model using Linear Kernel
  • 127. Hyperparameter Tuning for Linear Kernel
  • 128. Polynomial Kernel with Hyperparameter Tuning
  • 129. Radial Kernel with Hyperparameter Tuning
  • 130. SVM based Regression Model in R

  • 6. Deep Learning
  • 1. Introduction to Neural Networks and Course flow
  • 2. Perceptron
  • 3. Activation Functions
  • 4. Python - Creating Perceptron model
  • 5. Basic Terminologies
  • 6. Gradient Descent
  • 7. Back Propagation
  • 8. Some Important Concepts
  • 9. Hyperparameter

  • 7. ANN in Python
  • 1. Keras and Tensorflow
  • 2. Installing Tensorflow and Keras
  • 3. Dataset for classification
  • 4. Normalization and Test-Train split
  • 5. Different ways to create ANN using Keras
  • 6. Building the Neural Network using Keras
  • 7. Compiling and Training the Neural Network model
  • 8. Evaluating performance and Predicting using Keras
  • 9. Building Neural Network for Regression Problem
  • 10. Using Functional API for complex architectures
  • 11. Saving - Restoring Models and Using Callbacks
  • 12. Hyperparameter Tuning

  • 8. ANN in R
  • 1. Installing Keras and Tensorflow
  • 2. Data Normalization and Test-Train Split
  • 3. Building,Compiling and Training
  • 4. Evaluating and Predicting
  • 5. ANN with NeuralNets Package
  • 6. Building Regression Model with Functional API
  • 7. Complex Architectures using Functional API
  • 8. Saving - Restoring Models and Using Callbacks

  • 9. CNN - Basics
  • 1. CNN Introduction
  • 2. Stride
  • 3. Padding
  • 4. Filters and Feature maps
  • 5. Channels
  • 6. PoolingLayer
  • 7. CNN model in Python - Preprocessing
  • 8. CNN model in Python - structure and Compile
  • 9. CNN model in Python - Training and results
  • 10. Comparison - Pooling vs Without Pooling in Python
  • 11. CNN on MNIST Fashion Dataset - Model Architecture
  • 12. Data Preprocessin
  • 13. Creating Model Architecture
  • 14. Compiling and training
  • 15. Model Performance
  • 16. Comparison - Pooling vs Without Pooling in R

  • 10. Project - Creating CNN Model in Python
  • 1. Project - Introduction
  • 2. Data for the project.html
  • 3. Project - Data Preprocessing in Python
  • 4. Project - Training CNN model in Python
  • 5. Project in Python - model results
  • 6. Project in R - Data Preprocessing
  • 7. CNN Project in R - Structure and Compile
  • 8. Project in R - Training
  • 9. Project in R - Model Performance
  • 10. Project in R - Data Augmentation
  • 11. Project in R - Validation Performanc
  • 12. Project - Data Augmentation Preprocessing
  • 13. Project - Data Augmentation Training and Results

  • 11. Transfer Learning - Basics
  • 1. ILSVRC
  • 2. LeNET
  • 3. VGG16NET
  • 4. GoogLeNet
  • 5. Transfer Learning
  • 6. Project - Transfer Learning - VGG16
  • 7. Project - Transfer Learning - VGG16 (Implementation)
  • 8. Project - Transfer Learning - VGG16 (Performance)

  • 12. Time Series Analysis & Forecasting
  • 1. Introduction
  • 2. Time Series Forecasting - Use cases
  • 3. Forecasting model creation - Steps
  • 4. Forecasting model creation - Steps 1 (Goal)
  • 5. Time Series - Basic Notations

  • 13. Time Series - Processing in Python
  • 1. Data Loading in Python
  • 2. Time Series - Visualization Basics
  • 3. Time Series - Visualization in Python
  • 4. Time Series - Feature Engineering Basics
  • 5. Time Series - Feature Engineering in Python
  • 6. Time Series - Upsampling and Downsampling
  • 7. Time Series - Upsampling and Downsampling in Python
  • 8. Time Series - Power Transformation
  • 9. Moving Average
  • 10. Exponential Smoothing
  • 11. White Noise
  • 12. Random Walk
  • 13. Decomposing Time Series in Python
  • 14. Differencing
  • 15. Differencing in Python
  • 16. Test Train Split in Python
  • 17. Naive (Persistence) model in Python
  • 18. Auto Regression Model - Basics
  • 19. Auto Regression Model creation in Python
  • 20. Auto Regression with Walk Forward validation in Python
  • 21. Moving Average model -Basics
  • 22. Moving Average model in Python

  • 14. Time Series - ARIMA Model
  • 1. ACF and PACF
  • 2. ARIMA model - Basics
  • 3. ARIMA model in Python
  • 4. ARIMA model with Walk Forward Validation in Python

  • 15. Time Series - SARIMA Model
  • 1. SARIMA model
  • 2. SARIMA model in Python
  • 3. Stationary time Series
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39597
    حجم: 12707 مگابایت
    مدت زمان: 1930 دقیقه
    تاریخ انتشار: ۲۲ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید