وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
2

Python and R for Machine Learning & Deep Learning

سرفصل های دوره

Learn Machine Learning and Deep Learning using Python and R in 2024


1. Introduction
  • 1. Overview

  • 2. Python & Jupyter Notebook - Essentials
  • 1. Installing Python & Anaconda
  • 2. Jupyter Overview
  • 3. Python Basics
  • 4. Python Basics 2
  • 5. Python Basics 3
  • 6. Numpy
  • 7. Pandas
  • 8. Seaborn

  • 3. R Studio & R Crash
  • 1. Installing R & Studio
  • 2. R & R Studio - Basics
  • 3. Packages in R
  • 4. Inbuilt datasets of R
  • 5. Manual data entry
  • 6. Importing from CSV or Text files
  • 7. Barplots
  • 8. Histograms

  • 4. Statistics - Basics
  • 1. Types of Data
  • 2. Types of Statistics
  • 3. Describing data Graphically
  • 4. Measures of Centers
  • 5. Measures of Dispersion

  • 5. Machine Learning
  • 1. Introduction to Machine Learning
  • 2. Building a Machine Learning Model
  • 3. Gathering Business Knowledge
  • 4. Data Exploration
  • 5. Dataset & Data Dictionary
  • 6. Importing Data in Python
  • 7. Importing the dataset into R
  • 8. Univariate analysis and EDD
  • 9. EDD in Python
  • 10. EDD in R
  • 11. Outlier Treatment
  • 12. Outlier Treatment in Python
  • 13. Outlier Treatment in R
  • 14. Missing Value Imputation
  • 15. Missing Value Imputation in Python
  • 16. Missing Value imputation in R
  • 17. Seasonality in Data
  • 18. Bi-variate analysis and Variable transformation
  • 19. Variable transformation and deletion in Python
  • 20. Variable transformation in R
  • 21. Non-usable variables
  • 22. Dummy variable creation Handling qualitative data
  • 23. Dummy variable creation in Python
  • 24. Dummy variable creation in R
  • 25. Correlation Analysis
  • 26. Correlation Analysis in Python
  • 27. Correlation Matrix in R
  • 28. The Problem Statement
  • 29. Basic Equations and Ordinary Least Squares (OLS) method
  • 30. Assessing accuracy of predicted coefficients
  • 31. Assessing Model Accuracy RSE and R squared
  • 32. Simple Linear Regression in Python
  • 33. Simple Linear Regression in R
  • 34. Multiple Linear Regression
  • 35. The F - statistic
  • 36. Interpreting results of Categorical variables
  • 37. Multiple Linear Regression in Python
  • 38. Multiple Linear Regression in R
  • 39. Test-train split
  • 40. Bias Variance trade-off
  • 41. Test train split in Python
  • 42. Test-Train Split in R
  • 43. Regression models other than OLS
  • 44. Subset selection techniques
  • 45. SubShrinkage methods Ridge and Lassoset selection in R
  • 46. Ridge regression and Lasso in Python
  • 47. Heteroscedasticity
  • 48. Ridge Regression and Lasso in R
  • 49. importing the data into Python
  • 50. Importing the data into R
  • 51. Three Classifiers and the Problem statement
  • 52. Why cant we use Linear Regression
  • 53. Logistic Regression
  • 54. Training a Simple Logistic Model in Python
  • 55. Training a Simple Logistic model in R
  • 56. Result of Simple Logistic Regression
  • 57. Logistic with multiple predictors
  • 58. Training multiple predictor Logistic model in Python
  • 59. Training multiple predictor Logistic model in R
  • 60. Confusion Matrix
  • 61. Creating Confusion Matrix in Python
  • 62. Evaluating performance of model
  • 63. Evaluating model performance in Python
  • 64. Predicting probabilities, assigning classes and making Confusion Matrix in R
  • 65. Linear Discriminant Analysis
  • 66. LDA in Python
  • 67. Linear Discriminant Analysis in R
  • 68. Test-Train Split
  • 69. Test-Train Split in Python
  • 70. Test-Train Split in R
  • 71. K-Nearest Neighbors classifier
  • 72. K-Nearest Neighbors in Python Part 1
  • 73. K-Nearest Neighbors in Python Part 2
  • 74. K-Nearest Neighbors in R
  • 75. Understanding the results of classification models
  • 76. Summary of the three models
  • 77. Basics of Decision Trees
  • 78. Understanding a Regression Tree
  • 79. Stopping criteria for controlling tree growth
  • 80. Importing the Data set into Python
  • 81. Importing the Data set into R
  • 82. Missing value treatment in Python
  • 83. Dummy Variable creation in Python
  • 84. Dependent- Independent Data split in Python
  • 85. Test-Train split in Python
  • 86. Splitting Data into Test and Train Set in R
  • 87. Creating Decision tree in Python
  • 88. Building a Regression Tree in R
  • 89. Evaluating model performance in Python
  • 90. Plotting decision tree in Python
  • 91. Pruning a tree
  • 92. Pruning a tree in Python
  • 93. Pruning a Tree in R
  • 94. Ensemble technique 1 - Bagging
  • 95. Ensemble technique 1 - Bagging in Python
  • 96. Bagging in R
  • 97. Ensemble technique 2 - Random Forests
  • 98. Ensemble technique 2 - Random Forests in Python
  • 99. Using Grid Search in Python
  • 100. Random Forest in R
  • 101. Boosting
  • 102. Ensemble technique 3a - Boosting in Python
  • 103. Gradient Boosting in R
  • 104. Ensemble technique 3b - AdaBoost in Python
  • 105. AdaBoosting in R
  • 106. Ensemble technique 3c - XGBoost in Python
  • 107. XGBoosting in R
  • 108. Content Flow
  • 109. Concept of a Hyperplane
  • 110. Maximum Margin Classifier
  • 111. Limitations of Maximum Margin Classifier
  • 112. Support Vector classifiers
  • 113. Limitations of Support Vector Classifiers
  • 114. Kernel Based Support Vector Machines
  • 115. Regression and Classification Models
  • 116. Importing and preprocessing data in Python
  • 117. Standardizing the data
  • 118. SVM based Regression Model in Pytho
  • 119. Classification model - Preprocessing
  • 120. Classification model - Standardizing the data
  • 121. SVM Based classification model
  • 122. Hyper Parameter Tuning
  • 123. Polynomial Kernel with Hyperparameter Tuning
  • 124. Radial Kernel with Hyperparameter Tuning
  • 125. Importing and preprocessing data in R
  • 126. Classification SVM model using Linear Kernel
  • 127. Hyperparameter Tuning for Linear Kernel
  • 128. Polynomial Kernel with Hyperparameter Tuning
  • 129. Radial Kernel with Hyperparameter Tuning
  • 130. SVM based Regression Model in R

  • 6. Deep Learning
  • 1. Introduction to Neural Networks and Course flow
  • 2. Perceptron
  • 3. Activation Functions
  • 4. Python - Creating Perceptron model
  • 5. Basic Terminologies
  • 6. Gradient Descent
  • 7. Back Propagation
  • 8. Some Important Concepts
  • 9. Hyperparameter

  • 7. ANN in Python
  • 1. Keras and Tensorflow
  • 2. Installing Tensorflow and Keras
  • 3. Dataset for classification
  • 4. Normalization and Test-Train split
  • 5. Different ways to create ANN using Keras
  • 6. Building the Neural Network using Keras
  • 7. Compiling and Training the Neural Network model
  • 8. Evaluating performance and Predicting using Keras
  • 9. Building Neural Network for Regression Problem
  • 10. Using Functional API for complex architectures
  • 11. Saving - Restoring Models and Using Callbacks
  • 12. Hyperparameter Tuning

  • 8. ANN in R
  • 1. Installing Keras and Tensorflow
  • 2. Data Normalization and Test-Train Split
  • 3. Building,Compiling and Training
  • 4. Evaluating and Predicting
  • 5. ANN with NeuralNets Package
  • 6. Building Regression Model with Functional API
  • 7. Complex Architectures using Functional API
  • 8. Saving - Restoring Models and Using Callbacks

  • 9. CNN - Basics
  • 1. CNN Introduction
  • 2. Stride
  • 3. Padding
  • 4. Filters and Feature maps
  • 5. Channels
  • 6. PoolingLayer
  • 7. CNN model in Python - Preprocessing
  • 8. CNN model in Python - structure and Compile
  • 9. CNN model in Python - Training and results
  • 10. Comparison - Pooling vs Without Pooling in Python
  • 11. CNN on MNIST Fashion Dataset - Model Architecture
  • 12. Data Preprocessin
  • 13. Creating Model Architecture
  • 14. Compiling and training
  • 15. Model Performance
  • 16. Comparison - Pooling vs Without Pooling in R

  • 10. Project - Creating CNN Model in Python
  • 1. Project - Introduction
  • 2. Data for the project.html
  • 3. Project - Data Preprocessing in Python
  • 4. Project - Training CNN model in Python
  • 5. Project in Python - model results
  • 6. Project in R - Data Preprocessing
  • 7. CNN Project in R - Structure and Compile
  • 8. Project in R - Training
  • 9. Project in R - Model Performance
  • 10. Project in R - Data Augmentation
  • 11. Project in R - Validation Performanc
  • 12. Project - Data Augmentation Preprocessing
  • 13. Project - Data Augmentation Training and Results

  • 11. Transfer Learning - Basics
  • 1. ILSVRC
  • 2. LeNET
  • 3. VGG16NET
  • 4. GoogLeNet
  • 5. Transfer Learning
  • 6. Project - Transfer Learning - VGG16
  • 7. Project - Transfer Learning - VGG16 (Implementation)
  • 8. Project - Transfer Learning - VGG16 (Performance)

  • 12. Time Series Analysis & Forecasting
  • 1. Introduction
  • 2. Time Series Forecasting - Use cases
  • 3. Forecasting model creation - Steps
  • 4. Forecasting model creation - Steps 1 (Goal)
  • 5. Time Series - Basic Notations

  • 13. Time Series - Processing in Python
  • 1. Data Loading in Python
  • 2. Time Series - Visualization Basics
  • 3. Time Series - Visualization in Python
  • 4. Time Series - Feature Engineering Basics
  • 5. Time Series - Feature Engineering in Python
  • 6. Time Series - Upsampling and Downsampling
  • 7. Time Series - Upsampling and Downsampling in Python
  • 8. Time Series - Power Transformation
  • 9. Moving Average
  • 10. Exponential Smoothing
  • 11. White Noise
  • 12. Random Walk
  • 13. Decomposing Time Series in Python
  • 14. Differencing
  • 15. Differencing in Python
  • 16. Test Train Split in Python
  • 17. Naive (Persistence) model in Python
  • 18. Auto Regression Model - Basics
  • 19. Auto Regression Model creation in Python
  • 20. Auto Regression with Walk Forward validation in Python
  • 21. Moving Average model -Basics
  • 22. Moving Average model in Python

  • 14. Time Series - ARIMA Model
  • 1. ACF and PACF
  • 2. ARIMA model - Basics
  • 3. ARIMA model in Python
  • 4. ARIMA model with Walk Forward Validation in Python

  • 15. Time Series - SARIMA Model
  • 1. SARIMA model
  • 2. SARIMA model in Python
  • 3. Stationary time Series
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39597
    حجم: 12707 مگابایت
    مدت زمان: 1930 دقیقه
    تاریخ انتشار: ۲۲ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید