وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Probability / Stats: The Foundations of Machine Learning

سرفصل های دوره

Real-world, code-oriented learning for programmers to use prob/stats in all of CS, Data Science and Machine Learning


1 - Diving in with code
  • 1 - Code env setup and Python crash course
  • 1 - prob-cs-notebooks.zip
  • 1 - prob-cs-paper-notes.zip
  • 2 - Getting started with code Feel of data
  • 2 - prob-cs-notebooks.zip
  • 2 - prob-cs-paper-notes.zip
  • 3 - Foundations data types and representing data
  • 4 - Practical note onehot vector encoding
  • 5 - Exploring data types in code
  • 6 - Central tendency mean median mode
  • 7 - Section Review Tasks.html

  • 2 - Measures of Spread
  • 8 - Dispersion and spread in data variance standard deviation
  • 9 - Dispersion exploration through code
  • 10 - Section Review Tasks.html

  • 3 - Applications and Rules for Probability
  • 11 - Intro to uncertainty probability intuition
  • 12 - Simulating coin flips for probability
  • 13 - Conditional probability the most important concept in stats
  • 14 - Applying conditional probability Bayes rule
  • 15 - Application of Bayes rule in real world Spam detection
  • 16 - Spam detection implementation issues
  • 17 - Section Review Tasks.html

  • 4 - Counting
  • 18 - Rules for counting Mostly optional
  • 19 - Section Review Tasks.html

  • 5 - Random Variables Rationale and Applications
  • 20 - Quantifying events random variables
  • 21 - Two random variables joint probabilities
  • 22 - Distributions rationale and importance
  • 23 - Discrete distributions through code
  • 24 - Continuous distributions probability densities
  • 25 - Continuous distributions code
  • 26 - Case study sleep analysis structure and code
  • 27 - Section Review Tasks.html

  • 6 - Visualization in Intuition Building
  • 28 - Visualizing joint distributions the road to ML success
  • 29 - Dependence and variance of two random variables
  • 30 - Section Review Tasks.html

  • 7 - Applications to the Real World
  • 31 - Expected values decision making through probabilities
  • 32 - Entropy The most important application of expected values
  • 33 - Applying entropy coding decision trees for machine learning
  • 34 - Foundations of Bayesian inference
  • 35 - Bayesian inference code through PyMC3
  • 36 - Section Review Tasks.html

  • 8 - Extra Resources
  • 37 - Bonus Lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 15207
    حجم: 2513 مگابایت
    مدت زمان: 395 دقیقه
    تاریخ انتشار: ۳ تیر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید