وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

NLP-Natural Language Processing in Python(Theory & Projects)

سرفصل های دوره

Mastering Natural Language Processing with Spacy, NLTK, PyTorch, NLP Techniques, Text Data Analysis, Hands-on Projects


1 - Introduction
  • 1 - Introduction to Course
  • 2 - Introduction to Instructor
  • 3 - Introduction to CoInstructor
  • 4 - Course Introduction
  • 5 - Request for Your Honest Review
  • 6 - Links for the Courses Materials and Codes.html

  • 2 - IntroductionRegular Expressions
  • 7 - Links for the Courses Materials and Codes.html
  • 8 - What Is Regular Expression
  • 9 - Why Regular Expression
  • 10 - ELIZA Chatbot
  • 11 - Python Regular Expression Package

  • 3 - Meta CharactersRegular Expressions
  • 12 - Links for the Courses Materials and Codes.html
  • 13 - Meta Characters
  • 14 - Meta Characters Bigbrackets Exercise
  • 15 - Meta Characters Bigbrackets Exercise Solution
  • 16 - Meta Characters Bigbrackets Exercise 2
  • 17 - Meta Characters Bigbrackets Exercise 2 Solution
  • 18 - Meta Characters Cap
  • 19 - Meta Characters Cap Exercise 3
  • 20 - Meta Characters Cap Exercise 3 Solution
  • 21 - Backslash
  • 22 - Backslash Continued
  • 23 - Backslash Continued 01
  • 24 - Backslash Squared Brackets Exercise
  • 25 - Backslash Squared Brackets Exercise Solution
  • 26 - Backslash Squared Brackets Exercise Another Solution
  • 27 - Backslash Exercise
  • 28 - Backslash Exercise Solution And Special Sequences Exercise
  • 29 - Solution And Special Sequences Exercise Solution
  • 30 - Meta Character Asterisk
  • 31 - Meta Character Asterisk Exercise
  • 32 - Meta Character Asterisk Exercise Solution
  • 33 - Meta Character Asterisk Homework
  • 34 - Meta Character Asterisk Greedymatching
  • 35 - Meta Character Plus And Questionmark
  • 36 - Meta Character Curly Brackets Exercise
  • 37 - Meta Character Curly Brackets Exercise Solution

  • 4 - Pattern ObjectsRegular Expressions
  • 38 - Links for the Courses Materials and Codes.html
  • 39 - Pattern Objects
  • 40 - Pattern Objects Match Method Exersize
  • 41 - Pattern Objects Match Method Exersize Solution
  • 42 - Pattern Objects Match Method Vs Search Method
  • 43 - Pattern Objects Finditer Method
  • 44 - Pattern Objects Finditer Method Exersize Solution

  • 5 - More Meta CharactersRegular Expressions
  • 45 - Links for the Courses Materials and Codes.html
  • 46 - Meta Characters Logical Or
  • 47 - Meta Characters Beginning And End Patterns
  • 48 - Meta Characters Paranthesis

  • 6 - String ModificationRegular Expressions
  • 49 - Links for the Courses Materials and Codes.html
  • 50 - String Modification
  • 51 - Word Tokenizer Using Split Method
  • 52 - Sub Method Exercise
  • 53 - Sub Method Exercise Solution

  • 7 - Words and TokensText Preprocessing
  • 54 - Links for the Courses Materials and Codes.html
  • 55 - What Is A Word
  • 56 - Definition Of Word Is Task Dependent
  • 57 - Vocabulary And Corpus
  • 58 - Tokens
  • 59 - Tokenization In Spacy

  • 8 - Sentiment ClassificationText Preprocessing
  • 60 - Links for the Courses Materials and Codes.html
  • 61 - Yelp Reviews Classification Mini Project Introduction
  • 62 - Yelp Reviews Classification Mini Project Vocabulary Initialization
  • 63 - Yelp Reviews Classification Mini Project Adding Tokens To Vocabulary
  • 64 - Yelp Reviews Classification Mini Project Look Up Functions In Vocabulary
  • 65 - Yelp Reviews Classification Mini Project Building Vocabulary From Data
  • 66 - Yelp Reviews Classification Mini Project One Hot Encoding
  • 67 - Yelp Reviews Classification Mini Project One Hot Encoding Implementation
  • 68 - Yelp Reviews Classification Mini Project Encoding Documents
  • 69 - Yelp Reviews Classification Mini Project Encoding Documents Implementation
  • 70 - Yelp Reviews Classification Mini Project Train Test Splits
  • 71 - Yelp Reviews Classification Mini Project Featurecomputation
  • 72 - Yelp Reviews Classification Mini Project Classification

  • 9 - Language Independent TokenizationText Preprocessing
  • 73 - Links for the Courses Materials and Codes.html
  • 74 - Tokenization In Detial Introduction
  • 75 - Tokenization Is Hard
  • 76 - Tokenization Byte Pair Encoding
  • 77 - Tokenization Byte Pair Encoding Example
  • 78 - Tokenization Byte Pair Encoding On Test Data
  • 79 - Tokenization Byte Pair Encoding Implementation Getpaircounts
  • 80 - Tokenization Byte Pair Encoding Implementation Mergeincorpus
  • 81 - Tokenization Byte Pair Encoding Implementation BFE Training
  • 82 - Tokenization Byte Pair Encoding Implementation BFE Encoding
  • 83 - Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair
  • 84 - Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair 1

  • 10 - Text NomalizationText Preprocessing
  • 85 - Links for the Courses Materials and Codes.html
  • 86 - Word Normalization Case Folding
  • 87 - Word Normalization Lematization
  • 88 - Word Normalization Stemming
  • 89 - Word Normalization Sentence Segmentation

  • 11 - String Matching and Spelling CorrectionText Preprocessing
  • 90 - Links for the Courses Materials and Codes.html
  • 91 - Spelling Correction Minimum Edit Distance Intro
  • 92 - Spelling Correction Minimum Edit Distance Example
  • 93 - Spelling Correction Minimum Edit Distance Table Filling
  • 94 - Spelling Correction Minimum Edit Distance Dynamic Programming
  • 95 - Spelling Correction Minimum Edit Distance Psudocode
  • 96 - Spelling Correction Minimum Edit Distance Implementation
  • 97 - Spelling Correction Minimum Edit Distance Implementation Bugfixing
  • 98 - Spelling Correction Implementation

  • 12 - Language Modeling
  • 99 - Links for the Courses Materials and Codes.html
  • 100 - What Is A Language Model
  • 101 - Language Model Formal Definition
  • 102 - Language Model Curse Of Dimensionality
  • 103 - Language Model Markov Assumption And NGrams
  • 104 - Language Model Implementation Setup
  • 105 - Language Model Implementation Ngrams Function
  • 106 - Language Model Implementation Update Counts Function
  • 107 - Language Model Implementation Probability Model Funciton
  • 108 - Language Model Implementation Reading Corpus
  • 109 - Language Model Implementation Sampling Text

  • 13 - Topic Modelling with Word and Document Representations
  • 110 - Links for the Courses Materials and Codes.html
  • 111 - One Hot Vectors
  • 112 - One Hot Vectors Implementaton
  • 113 - One Hot Vectors Limitations
  • 114 - One Hot Vectors Uses As Target Labeling
  • 115 - Term Frequency For Document Representations
  • 116 - Term Frequency For Document Representations Implementations
  • 117 - Term Frequency For Word Representations
  • 118 - TFIDF For Document Representations
  • 119 - TFIDF For Document Representations Implementation Reading Corpus
  • 120 - TFIDF For Document Representations Implementation Computing Document Frequenc
  • 121 - TFIDF For Document Representations Implementation Computing TFIDF
  • 122 - Topic Modeling With TFIDF 1
  • 123 - Topic Modeling With TFIDF 3
  • 124 - Topic Modeling With TFIDF 4
  • 125 - Topic Modeling With TFIDF 5
  • 126 - Topic Modeling With Gensim

  • 14 - Word Embeddings LSI
  • 127 - Links for the Courses Materials and Codes.html
  • 128 - Word Cooccurrence Matrix
  • 129 - Word Cooccurrence Matrix vs Documentterm Matrix
  • 130 - Word Cooccurrence Matrix Implementation Preparing Data
  • 131 - Word Cooccurrence Matrix Implementation Preparing Data 2
  • 132 - Word Cooccurrence Matrix Implementation Preparing Data Getting Vocabulary
  • 133 - Word Cooccurrence Matrix Implementation Final Function
  • 134 - Word Cooccurrence Matrix Implementation Handling Memory Issues On Large Corp
  • 135 - Word Cooccurrence Matrix Sparsity
  • 136 - Word Cooccurrence Matrix Positive Point Wise Mutual Information PPMI
  • 137 - PCA For Dense Embeddings
  • 138 - Latent Semantic Analysis
  • 139 - Latent Semantic Analysis Implementation

  • 15 - Word Semantics
  • 140 - Links for the Courses Materials and Codes.html
  • 141 - Cosine Similarity
  • 142 - Cosine Similarity Geting Norms Of Vectors
  • 143 - Cosine Similarity Normalizing Vectors
  • 144 - Cosine Similarity With More Than One Vectors
  • 145 - Cosine Similarity Getting Most Similar Words In The Vocabulary
  • 146 - Cosine Similarity Getting Most Similar Words In The Vocabulary Fixingbug Of D
  • 147 - Cosine Similarity Word2Vec Embeddings
  • 148 - Words Analogies
  • 149 - Words Analogies Implemenation 1
  • 150 - Words Analogies Implemenation 2
  • 151 - Words Visualizations
  • 152 - Words Visualizations Implementaion
  • 153 - Words Visualizations Implementaion 2

  • 16 - Word2vecOptional
  • 154 - Links for the Courses Materials and Codes.html
  • 155 - Static And Dynamic Embeddings
  • 156 - Self Supervision
  • 157 - Word2Vec Algorithm Abstract
  • 158 - Word2Vec Why Negative Sampling
  • 159 - Word2Vec What Is Skip Gram
  • 160 - Word2Vec How To Define Probability Law
  • 161 - Word2Vec Sigmoid
  • 162 - Word2Vec Formalizing Loss Function
  • 163 - Word2Vec Loss Function
  • 164 - Word2Vec Gradient Descent Step
  • 165 - Word2Vec Implemenation Preparing Data
  • 166 - Word2Vec Implemenation Gradient Step
  • 167 - Word2Vec Implemenation Driver Function

  • 17 - Need of Deep Learning for NLPNLP with Deep Learning DNN
  • 168 - Links for the Courses Materials and Codes.html
  • 169 - Why RNNs For NLP
  • 170 - Pytorch Installation And Tensors Introduction
  • 171 - Automatic Diffrenciation Pytorch

  • 18 - IntroductionNLP with Deep Learning DNN
  • 172 - Links for the Courses Materials and Codes.html
  • 173 - Why DNNs In Machine Learning
  • 174 - Representational Power And Data Utilization Capacity Of DNN
  • 175 - Perceptron
  • 176 - Perceptron Implementation
  • 177 - DNN Architecture
  • 178 - DNN Forwardstep Implementation
  • 179 - DNN Why Activation Function Is Required
  • 180 - DNN Properties Of Activation Function
  • 181 - DNN Activation Functions In Pytorch
  • 182 - DNN What Is Loss Function
  • 183 - DNN Loss Function In Pytorch

  • 19 - TrainingNLP with Deep Learning DNN
  • 184 - Links for the Courses Materials and Codes.html
  • 185 - DNN Gradient Descent
  • 186 - DNN Gradient Descent Implementation
  • 187 - DNN Gradient Descent Stochastic Batch Minibatch
  • 188 - DNN Gradient Descent Summary
  • 189 - DNN Implemenation Gradient Step
  • 190 - DNN Implemenation Stochastic Gradient Descent
  • 191 - DNN Implemenation Batch Gradient Descent
  • 192 - DNN Implemenation Minibatch Gradient Descent
  • 193 - DNN Implemenation In Pytorch

  • 20 - Hyper parametersNLP with Deep Learning DNN
  • 194 - Links for the Courses Materials and Codes.html
  • 195 - DNN Weights Initializations
  • 196 - DNN Learning Rate
  • 197 - DNN Batch Normalization
  • 198 - DNN Batch Normalization Implementation
  • 199 - DNN Optimizations
  • 200 - DNN Dropout
  • 201 - DNN Dropout In Pytorch
  • 202 - DNN Early Stopping
  • 203 - DNN Hyperparameters
  • 204 - DNN Pytorch CIFAR10 Example

  • 21 - IntroductionNLP with Deep Learning RNN
  • 205 - Links for the Courses Materials and Codes.html
  • 206 - What Is RNN
  • 207 - Understanding RNN With A Simple Example
  • 208 - RNN Applications Human Activity Recognition
  • 209 - RNN Applications Image Captioning
  • 210 - RNN Applications Machine Translation
  • 211 - RNN Applications Speech Recognition Stock Price Prediction
  • 212 - RNN Models

  • 22 - Miniproject Language ModellingNLP with Deep Learning RNN
  • 213 - Links for the Courses Materials and Codes.html
  • 214 - Language Modeling Next Word Prediction
  • 215 - Language Modeling Next Word Prediction Vocabulary Index
  • 216 - Language Modeling Next Word Prediction Vocabulary Index Embeddings
  • 217 - Language Modeling Next Word Prediction Rnn Architecture
  • 218 - Language Modeling Next Word Prediction Python 1
  • 219 - Language Modeling Next Word Prediction Python 2
  • 220 - Language Modeling Next Word Prediction Python 3
  • 221 - Language Modeling Next Word Prediction Python 4
  • 222 - Language Modeling Next Word Prediction Python 5
  • 223 - Language Modeling Next Word Prediction Python 6

  • 23 - Miniproject Sentiment ClassificationNLP with Deep Learning RNN
  • 224 - Links for the Courses Materials and Codes.html
  • 225 - Vocabulary Implementation
  • 226 - Vocabulary Implementation Helpers
  • 227 - Vocabulary Implementation From File
  • 228 - Vectorizer
  • 229 - RNN Setup
  • 230 - RNN Setup 1

  • 24 - RNN in PyTorchNLP with Deep Learning RNN
  • 231 - Links for the Courses Materials and Codes.html
  • 232 - RNN In Pytorch Introduction
  • 233 - RNN In Pytorch Embedding Layer
  • 234 - RNN In Pytorch Nn Rnn
  • 235 - RNN In Pytorch Output Shapes
  • 236 - RNN In Pytorch Gatedunits
  • 237 - RNN In Pytorch Gatedunits GRU LSTM
  • 238 - RNN In Pytorch Bidirectional RNN
  • 239 - RNN In Pytorch Bidirectional RNN Output Shapes
  • 240 - RNN In Pytorch Bidirectional RNN Output Shapes Seperation
  • 241 - RNN In Pytorch Example

  • 25 - Advanced RNN modelsNLP with Deep Learning RNN
  • 242 - Links for the Courses Materials and Codes.html
  • 243 - RNN Encoder Decoder
  • 244 - RNN Attention

  • 26 - Neural Machine Translation
  • 245 - Links for the Courses Materials and Codes.html
  • 246 - Introduction To Dataset And Packages
  • 247 - Implementing Language Class
  • 248 - Testing Language Class And Implementing Normalization
  • 249 - Reading Datafile
  • 250 - Reading Building Vocabulary
  • 251 - EncoderRNN
  • 252 - DecoderRNN
  • 253 - DecoderRNN Forward Step
  • 254 - DecoderRNN Helper Functions
  • 255 - Training Module
  • 256 - Stochastic Gradient Descent
  • 257 - NMT Training
  • 258 - NMT Evaluation
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 37819
    حجم: 11389 مگابایت
    مدت زمان: 1412 دقیقه
    تاریخ انتشار: 21 خرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید