MLOps (Machine Learning Operations) Fundamentals
24,900 تومان
بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
خرید دانلودی فوری
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
ویدئو معرفی این محصول
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud.
1. Welcome to MLOps Fundamentals
1. Course Introduction
2. Why and When do we Need MLOps
1. Data Scientists Pain Points
2. The concept of DevOps in ML
3. Machine Learning Lifecycle
03. Understanding the Main Kubernetes Components (Optional)
01. Introduction
02. Introduction to Containers
03. Containers and Container Images
04. Lab Intro
05. Pluralsight - Getting Started with GCP and Qwiklabs
07. Lab solution
08. Introduction to Kubernetes
09. Introduction to Google Kubernetes Engine
10. Compute Options Detail
11. Kubernetes Concepts
12. The Kubernetes Control Plane
13. Google Kubernetes Engine Concepts
14. Lab Intro
16. Lab solution
17. Deployments
18. Ways to Create Deployments
19. Services and Scaling
20. Updating Deployments
21. Rolling Updates
22. Blue-Green Deployments
23. Canary Deployments
24. Managing Deployments
25. Lab Intro
27. Jobs and CronJobs
28. Parallel Jobs
29. CronJobs
4. Introduction to AI Platform Pipelines
1. Overview
2. Introduction to AI Platform Pipelines
3. Concepts
4. When to use
5. Ecosystem
7. Lab Solution
5. Training, Tuning and Serving on AI Platform
1. System and concepts overview
2. Create a reproducible dataset
3. Implement a tunable model
4. Build and push a training container
5. Train and tune a model
6. Serve and query a model
7. Lab Intro
9. Lab Solution
6. Kubeflow Pipelines on AI Platform
1. System and concept overview
2. Describing a Kubeflow Pipeline with KF DSL
3. Pre-built components
4. Lightweight Python Components
5. Custom components
6. Compile, Upload and Run
7. Lab Intro - Continuous Training Pipeline with Kubeflow Pipeline and Cloud AI Platform
9. Lab Solution
7. CICD for Kubeflow Pipelines on AI Platform
1. Concept Overview
2. Cloud Build Builders
3. Cloud Build Configuration
4. Cloud Build Triggers
5. Lab Intro
8. Summary
1. Summary