وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Master R for Statistics and Data Science

سرفصل های دوره

A former Google data scientist teaches you R starting with the basics, and learning common tools for data science.


1. Introduction
  • 1. Introduction
  • 2. Install R and RStudio.html

  • 2. Creating vectors and assignment
  • 1. Variables and assignment
  • 2. Variables and assignment.html
  • 3. Variables and assignment coding assignment
  • 4. Variables and assignment.html
  • 5. Vectors with c()
  • 6. vectors with c().html
  • 7. Vectors with c() solution
  • 8. The colon
  • 9. Vector and colon quiz.html
  • 10. colon .html
  • 11. colon coding solution
  • 12. seq()
  • 13. seq() quiz.html
  • 14. seq() exercise 1.html
  • 15. seq() exercise 1 solution
  • 16. seq() exercise 2.html
  • 17. seq() exercise 2 solution
  • 18. rep()
  • 19. rep() quiz.html
  • 20. rep() exercise 1.html
  • 21. rep() exercise 1 solution
  • 22. rep() exercise 2.html
  • 23. rep() exercise 2 solution

  • 3. Vectorized operations
  • 1. Introduction to vectorized operations
  • 2. Vectorized operations quiz.html
  • 3. Adding a number to all elements of a vector.html
  • 4. Adding a number to all elements of a vector solution
  • 5. Converting Celsius to Fahrenheit.html
  • 6. Converting Celsius to Fahrenheit solution
  • 7. Adding two vectors - weights of twins.html
  • 8. Adding two vectors - weights of twins solution

  • 4. Basic functions on vectors
  • 1. Common functions in R
  • 2. mean(), median(), sum(), length().html
  • 3. mean() median() sum() length() solution
  • 4. sd() and var().html
  • 5. sd() and var() solution
  • 6. summary().html
  • 7. summary() solution
  • 8. Missing data and na.rm

  • 5. Subsetting vectors
  • 1. Basics of subsetting
  • 2. Subsetting quiz 1.html
  • 3. subsetting.html
  • 4. subsetting with c().html
  • 5. subsetting with .html
  • 6. removing elements with -.html

  • 6. Booleans
  • 1. Booleans
  • 2. Boolean Quiz 1.html
  • 3. ==, , , =, =.html
  • 4. Subsetting a vector with a boolean

  • 7. Matrix basics
  • 1. Creating matrices with cbind and rbind
  • 2. cbind() and rbind().html
  • 3. cbind and rbind quiz.html
  • 4. Creating matrices with matrix()
  • 5. matrix() quiz.html
  • 6. matrix() 1.html
  • 7. dim(), nrow(), ncol() quiz.html

  • 8. Matrix subsetting
  • 1. Matrix subsetting
  • 2. Matrix subsetting quiz 1.html
  • 3. matrix subsetting rows and columns.html
  • 4. matrix subsetting, only certain columns.html
  • 5. matrix subsetting, only certain rows.html
  • 6. Matrix subsetting with booleans
  • 7. matrix subsetting, rows that meet a boolean criterion.html

  • 9. Matrix operations
  • 1. apply()
  • 2. apply() quiz 1.html
  • 3. rowSums() and rowMeans().html
  • 4. apply().html

  • 10. data frames
  • 1. Data frames
  • 2. creating data frames.html
  • 3. data frame quiz.html

  • 11. lists
  • 1. Lists
  • 2. list quiz.html

  • 12. Generating random numbers and splitting training and testing data
  • 1. sample()
  • 2. sample().html
  • 3. sample() quiz.html
  • 4. Subsetting data randomly with sample()
  • 5. test and train data.html
  • 6. testtrain quiz.html

  • 13. Bernoulli random variables
  • 1. Binary random variables, sample space
  • 2. Simulating Bernoulli random variables with rbinom()
  • 3. rbinom() exercise.html
  • 4. Parameters - The population proportion
  • 5. Sample statistics - mean() for calculating sample proportions
  • 6. dbinom()
  • 7. dbinom() exercise.html

  • 14. Binomial random variables
  • 1. Binomial random variables
  • 2. mean(rbinom()), Law of Large Numbers
  • 3. Bernoulli trials - counting successes and failures.html
  • 4. Generating Binomial random variables with rbinom().html
  • 5. Estimating probabilities with mean() and rbinom()
  • 6. dbinom() intro
  • 7. dbinom().html
  • 8. Expected Value
  • 9. Variance and Standard Deviation
  • 10. cdf and pbinom()
  • 11. pbinom().html
  • 12. Other types of inequalities and intervals
  • 13. Visualizing the cdf
  • 14. The median
  • 15. qbinom()
  • 16. qbinom().html
  • 17. Problem-solving with qbinom()

  • 15. Binom.test
  • 1. binom.test
  • 2. binom.test.html

  • 16. Hypergeometric distribution
  • 1. Hypergeometric random variables

  • 17. Normal Distribution
  • 1. Normal random variables and the empirical rule
  • 2. Empirical rule with rnorm()
  • 3. dnorm() and continuous distributions
  • 4. pnorm() and the empirical rule
  • 5. qnorm()
  • 6. rnorm(), mean, and sd.html
  • 7. pnorm().html
  • 8. dnorm() and plotting, continuous distributions.html
  • 9. qnorm().html
  • 10. Normal approximation to the binomial distribution.html
  • 11. prop.test() one sample.html
  • 12. prop.test two sample.html
  • 13. prop.test two sample example.html

  • 18. Sums, CLT, Normal Approximations
  • 1. Expected value of a sum
  • 2. Standard deviation of a sum
  • 3. Sums of normal random variable is normal
  • 4. Mean and sd of binomial distribution, Normal approximation to the binomial

  • 19. Probability Geometric distribution
  • 1. Geometric random variables
  • 2. rgeom()
  • 3. dgeom()
  • 4. dgeom().html
  • 5. Expected value and standard deviation of geometric distribution
  • 6. pgeom(), the cdf
  • 7. pgeom().html
  • 8. qgeom()
  • 9. qgeom() coding exercise.html

  • 20. Probability Negative Binomial distribution
  • 1. Negative binomial random variables
  • 2. rnbinom()
  • 3. dnbinom()
  • 4. dnbinom(), pnbinom(), qnbinom() coding exercise.html
  • 5. Mean and standard deviation of negative binomial distribution
  • 6. pnbinom()
  • 7. qnbinom()
  • 8. Normal approximation to the negative binomial coding exercise.html

  • 21. Probability Exponential Distribution
  • 1. Exponential random variables
  • 2. rexp()
  • 3. rexp() coding exercise.html
  • 4. dexp()
  • 5. Expected value and sd of exponential distribution
  • 6. pexp() and memorylessness
  • 7. pexp() coding exercise.html
  • 8. qexp()
  • 9. qexp() coding exercise.html

  • 22. Probability Gamma distribution
  • 1. Gamma distribution and rgamma()
  • 2. Expected value and standard deviation of gamma distribution
  • 3. dgamma() and pgamma()
  • 4. qgamma()
  • 5. pgamma() and qgamma() coding exercise.html
  • 6. Normal approximation to gamma distribution
  • 7. Normal approximation to gamma distribution coding exercise.html

  • 23. Probability Poisson distribution
  • 1. Poisson distribution and rpois()
  • 2. rpois() coding exercise.html
  • 3. dpois()
  • 4. dpois() coding exercise.html
  • 5. Expected value and standard deviation
  • 6. ppois()
  • 7. ppois() coding exercise.html
  • 8. qpois()
  • 9. qpois() coding exercise.html
  • 10. Dealing with different time periods
  • 11. Normal approximation to the Poisson distribution
  • 12. Poisson Normal Approximation coding exercise.html

  • 24. Probability Uniform distribution
  • 1. Uniform distribution, runif() and dunif()
  • 2. Mean and standard deviation of the uniform distribution
  • 3. punif()
  • 4. qunif() and the inverse transform method
  • 5. punif() and qunif() coding exercise.html
  • 6. Inverse transform coding exercise.html
  • 7. rchisq(), pchisq(), qchisq().html
  • 8. table().html
  • 9. chi-square goodness of fit test by hand.html
  • 10. chisq.test.html
  • 11. aov().html
  • 12. filter().html
  • 13. select().html
  • 14. glm().html
  • 15. accuracy.html
  • 16. precision and recall.html
  • 17. 1 sample t test by hand.html
  • 18. t.test() one sample.html
  • 19. 1 mean t interval.html
  • 20. 1 proportion interval, binom.test, prop.test.html
  • 21. lm().html
  • 22. predict.html
  • 23. MSE.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 37328
    حجم: 2739 مگابایت
    مدت زمان: 354 دقیقه
    تاریخ انتشار: ۱۹ خرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید