وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Master R for Statistics and Data Science

سرفصل های دوره

A former Google data scientist teaches you R starting with the basics, and learning common tools for data science.


1. Introduction
  • 1. Introduction
  • 2. Install R and RStudio.html

  • 2. Creating vectors and assignment
  • 1. Variables and assignment
  • 2. Variables and assignment.html
  • 3. Variables and assignment coding assignment
  • 4. Variables and assignment.html
  • 5. Vectors with c()
  • 6. vectors with c().html
  • 7. Vectors with c() solution
  • 8. The colon
  • 9. Vector and colon quiz.html
  • 10. colon .html
  • 11. colon coding solution
  • 12. seq()
  • 13. seq() quiz.html
  • 14. seq() exercise 1.html
  • 15. seq() exercise 1 solution
  • 16. seq() exercise 2.html
  • 17. seq() exercise 2 solution
  • 18. rep()
  • 19. rep() quiz.html
  • 20. rep() exercise 1.html
  • 21. rep() exercise 1 solution
  • 22. rep() exercise 2.html
  • 23. rep() exercise 2 solution

  • 3. Vectorized operations
  • 1. Introduction to vectorized operations
  • 2. Vectorized operations quiz.html
  • 3. Adding a number to all elements of a vector.html
  • 4. Adding a number to all elements of a vector solution
  • 5. Converting Celsius to Fahrenheit.html
  • 6. Converting Celsius to Fahrenheit solution
  • 7. Adding two vectors - weights of twins.html
  • 8. Adding two vectors - weights of twins solution

  • 4. Basic functions on vectors
  • 1. Common functions in R
  • 2. mean(), median(), sum(), length().html
  • 3. mean() median() sum() length() solution
  • 4. sd() and var().html
  • 5. sd() and var() solution
  • 6. summary().html
  • 7. summary() solution
  • 8. Missing data and na.rm

  • 5. Subsetting vectors
  • 1. Basics of subsetting
  • 2. Subsetting quiz 1.html
  • 3. subsetting.html
  • 4. subsetting with c().html
  • 5. subsetting with .html
  • 6. removing elements with -.html

  • 6. Booleans
  • 1. Booleans
  • 2. Boolean Quiz 1.html
  • 3. ==, , , =, =.html
  • 4. Subsetting a vector with a boolean

  • 7. Matrix basics
  • 1. Creating matrices with cbind and rbind
  • 2. cbind() and rbind().html
  • 3. cbind and rbind quiz.html
  • 4. Creating matrices with matrix()
  • 5. matrix() quiz.html
  • 6. matrix() 1.html
  • 7. dim(), nrow(), ncol() quiz.html

  • 8. Matrix subsetting
  • 1. Matrix subsetting
  • 2. Matrix subsetting quiz 1.html
  • 3. matrix subsetting rows and columns.html
  • 4. matrix subsetting, only certain columns.html
  • 5. matrix subsetting, only certain rows.html
  • 6. Matrix subsetting with booleans
  • 7. matrix subsetting, rows that meet a boolean criterion.html

  • 9. Matrix operations
  • 1. apply()
  • 2. apply() quiz 1.html
  • 3. rowSums() and rowMeans().html
  • 4. apply().html

  • 10. data frames
  • 1. Data frames
  • 2. creating data frames.html
  • 3. data frame quiz.html

  • 11. lists
  • 1. Lists
  • 2. list quiz.html

  • 12. Generating random numbers and splitting training and testing data
  • 1. sample()
  • 2. sample().html
  • 3. sample() quiz.html
  • 4. Subsetting data randomly with sample()
  • 5. test and train data.html
  • 6. testtrain quiz.html

  • 13. Bernoulli random variables
  • 1. Binary random variables, sample space
  • 2. Simulating Bernoulli random variables with rbinom()
  • 3. rbinom() exercise.html
  • 4. Parameters - The population proportion
  • 5. Sample statistics - mean() for calculating sample proportions
  • 6. dbinom()
  • 7. dbinom() exercise.html

  • 14. Binomial random variables
  • 1. Binomial random variables
  • 2. mean(rbinom()), Law of Large Numbers
  • 3. Bernoulli trials - counting successes and failures.html
  • 4. Generating Binomial random variables with rbinom().html
  • 5. Estimating probabilities with mean() and rbinom()
  • 6. dbinom() intro
  • 7. dbinom().html
  • 8. Expected Value
  • 9. Variance and Standard Deviation
  • 10. cdf and pbinom()
  • 11. pbinom().html
  • 12. Other types of inequalities and intervals
  • 13. Visualizing the cdf
  • 14. The median
  • 15. qbinom()
  • 16. qbinom().html
  • 17. Problem-solving with qbinom()

  • 15. Binom.test
  • 1. binom.test
  • 2. binom.test.html

  • 16. Hypergeometric distribution
  • 1. Hypergeometric random variables

  • 17. Normal Distribution
  • 1. Normal random variables and the empirical rule
  • 2. Empirical rule with rnorm()
  • 3. dnorm() and continuous distributions
  • 4. pnorm() and the empirical rule
  • 5. qnorm()
  • 6. rnorm(), mean, and sd.html
  • 7. pnorm().html
  • 8. dnorm() and plotting, continuous distributions.html
  • 9. qnorm().html
  • 10. Normal approximation to the binomial distribution.html
  • 11. prop.test() one sample.html
  • 12. prop.test two sample.html
  • 13. prop.test two sample example.html

  • 18. Sums, CLT, Normal Approximations
  • 1. Expected value of a sum
  • 2. Standard deviation of a sum
  • 3. Sums of normal random variable is normal
  • 4. Mean and sd of binomial distribution, Normal approximation to the binomial

  • 19. Probability Geometric distribution
  • 1. Geometric random variables
  • 2. rgeom()
  • 3. dgeom()
  • 4. dgeom().html
  • 5. Expected value and standard deviation of geometric distribution
  • 6. pgeom(), the cdf
  • 7. pgeom().html
  • 8. qgeom()
  • 9. qgeom() coding exercise.html

  • 20. Probability Negative Binomial distribution
  • 1. Negative binomial random variables
  • 2. rnbinom()
  • 3. dnbinom()
  • 4. dnbinom(), pnbinom(), qnbinom() coding exercise.html
  • 5. Mean and standard deviation of negative binomial distribution
  • 6. pnbinom()
  • 7. qnbinom()
  • 8. Normal approximation to the negative binomial coding exercise.html

  • 21. Probability Exponential Distribution
  • 1. Exponential random variables
  • 2. rexp()
  • 3. rexp() coding exercise.html
  • 4. dexp()
  • 5. Expected value and sd of exponential distribution
  • 6. pexp() and memorylessness
  • 7. pexp() coding exercise.html
  • 8. qexp()
  • 9. qexp() coding exercise.html

  • 22. Probability Gamma distribution
  • 1. Gamma distribution and rgamma()
  • 2. Expected value and standard deviation of gamma distribution
  • 3. dgamma() and pgamma()
  • 4. qgamma()
  • 5. pgamma() and qgamma() coding exercise.html
  • 6. Normal approximation to gamma distribution
  • 7. Normal approximation to gamma distribution coding exercise.html

  • 23. Probability Poisson distribution
  • 1. Poisson distribution and rpois()
  • 2. rpois() coding exercise.html
  • 3. dpois()
  • 4. dpois() coding exercise.html
  • 5. Expected value and standard deviation
  • 6. ppois()
  • 7. ppois() coding exercise.html
  • 8. qpois()
  • 9. qpois() coding exercise.html
  • 10. Dealing with different time periods
  • 11. Normal approximation to the Poisson distribution
  • 12. Poisson Normal Approximation coding exercise.html

  • 24. Probability Uniform distribution
  • 1. Uniform distribution, runif() and dunif()
  • 2. Mean and standard deviation of the uniform distribution
  • 3. punif()
  • 4. qunif() and the inverse transform method
  • 5. punif() and qunif() coding exercise.html
  • 6. Inverse transform coding exercise.html
  • 7. rchisq(), pchisq(), qchisq().html
  • 8. table().html
  • 9. chi-square goodness of fit test by hand.html
  • 10. chisq.test.html
  • 11. aov().html
  • 12. filter().html
  • 13. select().html
  • 14. glm().html
  • 15. accuracy.html
  • 16. precision and recall.html
  • 17. 1 sample t test by hand.html
  • 18. t.test() one sample.html
  • 19. 1 mean t interval.html
  • 20. 1 proportion interval, binom.test, prop.test.html
  • 21. lm().html
  • 22. predict.html
  • 23. MSE.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 37328
    حجم: 2739 مگابایت
    مدت زمان: 354 دقیقه
    تاریخ انتشار: ۱۹ خرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید