وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning with R

سرفصل های دوره

Learn how to use the R programming language for data science and machine learning and data visualization


1. Machine Learning with R
  • 1. Introduction to Machine Learning
  • 2. How do Machine Learn
  • 3. Steps to Apply Machine Learning
  • 4. Regression and Classification Problems
  • 5. Basic Data Manipulation in R
  • 6. More on Data Manipulation in R
  • 7. Basic Data Manipulation in R - Practical
  • 8. Create a Vector
  • 9. 2.7 Problem and Solution
  • 10. 2.10 Problem and Solution
  • 11. Exponentiation Right to Left
  • 12. 2.13 Avoiding Some Common Mistakes
  • 13. Simple Linear Regression
  • 14. Simple Linear Regression Continues
  • 15. What is Rsquare
  • 16. Standard Error
  • 17. General Statistics
  • 18. General Statistics Continues
  • 19. Simple Linear Regression and More of Statistics
  • 20. Open the Studio
  • 21. What is R Square
  • 22. What is STD Error
  • 23. Reject Null Hypothesis
  • 24. Variance Covariance and Correlation
  • 25. Root names and Types of Distribution Function
  • 26. Generating Random Numbers and Combination Function
  • 27. Probabilities for Discrete Distribution Function
  • 28. Quantile Function and Poison Distribution
  • 29. Students T Distribution, Hypothesis and Example
  • 30. Chai-Square Distribution
  • 31. Data Visualization
  • 32. More on Data Visualization
  • 33. Multiple Linear Regression
  • 34. Multiple Linear Regression Continues
  • 35. Regression Variables
  • 36. Generalized Linear Model
  • 37. Generalized Least Square
  • 38. KNN- Various Methods of Distance Measurements
  • 39. Overview of KNN- (Steps involved)
  • 40. Data normalization and prediction on Test Data
  • 41. Improvement of Model Performance and ROC
  • 42. Decision Tree Classifier
  • 43. More on Decision Tree Classifier
  • 44. Pruning of Decision Trees
  • 45. Decision Tree Remaining
  • 46. Decision Tree Remaining Continues
  • 47. General concept of Random Forest
  • 48. Ada Boosting and Ensemble Learning
  • 49. Data Visualization and Preparation
  • 50. Tuning Random Forest Model
  • 51. Evaluation of Random Forest Model Performance
  • 52. Introduction to Kmeans Clustering
  • 53. Kmeans Elbow Point and Dataset
  • 54. Example of Kmeans Dataset
  • 55. Creating a Graph for Kmeans Clustering
  • 56. Creating a Graph for Kmeans Clustering Continues
  • 57. Aggregation Function of Clustering
  • 58. Conditional Probability with Bayes Algorithm
  • 59. Venn Diagram Naive Bayes Classification
  • 60. Component OF Bayes Theorem using Frequency Table
  • 61. Naive Bayes Classification Algorithm and Laplace Estimator
  • 62. Example of Naive Bayes Classification
  • 63. Example of Naive Bayes Classification Continues
  • 64. Spam and Ham Messages in Word Cloud
  • 65. Implementation of Dictionary and Document Term Matrix
  • 66. Executes the Function Naive Bayes
  • 67. Support Vector Machine with Black Box Method
  • 68. Linearly and Non- Linearly Support Vector Machine
  • 69. Kernal Trick
  • 70. Gaussian RBF Kernal and OCR with SVMs
  • 71. Examples of Gaussian RBF Kernal and OCR with SVMs
  • 72. Summary of Support Vector Machine
  • 73. Feature Selection Dimension Reduction Technique
  • 74. Feature Extraction Dimension Reduction Technique
  • 75. Dimension Reduction Technique Example
  • 76. Dimension Reduction Technique Example Continues
  • 77. Introduction Principal Component Analysis
  • 78. Steps of PCA
  • 79. Steps of PCA Continues
  • 80. Eigen Values
  • 81. Eigen Vectors
  • 82. Principal Component Analysis using Pr-Comp
  • 83. Principal Component Analysis using Pr-Comp Continues
  • 84. C Bind Type in PCA
  • 85. R Type Model
  • 86. Black Box Method in Neural Network
  • 87. Characteristics of a Neural Networks
  • 88. Network Topology of a Neural Networks
  • 89. Weight Adjustment and Case Update
  • 90. Introduction Model Building in R
  • 91. Installing the Package of Model Building in R
  • 92. Nodes in Model Building in R
  • 93. Example of Model Building in R
  • 94. Time Series Analysis
  • 95. Pattern in Time Series Data
  • 96. Time Series Modelling
  • 97. Moving Average Model
  • 98. Auto Correlation Function
  • 99. Inference of ACF and PFCF
  • 100. Diagnostic Checking
  • 101. Forecasting Using Stock Price
  • 102. Stock Price Index
  • 103. Stock Price Index Continues
  • 104. Prophet Stock
  • 105. Run Prophet Stock
  • 106. Time Series Data Denationalization
  • 107. Time Series Data Denationalization Continues
  • 108. Average of Quarter Denationalization
  • 109. Regression of Denationalization
  • 110. Gradient Boosting Machines
  • 111. Errors in Gradient Boosting Machines
  • 112. What is Error Rate in Gradient Boosting Machines
  • 113. Optimization Gradient Boosting Machines
  • 114. Gradient Boosting Trees (GBT)
  • 115. Dataset Boosting in Gradient
  • 116. Example of Dataset Boosting in Gradient
  • 117. Example of Dataset Boosting in Gradient Continues
  • 118. Market Basket Analysis Association Rules
  • 119. Market Basket Analysis Association Rules Continues
  • 120. Market Basket Analysis Interpretation
  • 121. Implementation of Market Basket Analysis
  • 122. Example of Market Basket Analysis
  • 123. Datamining in Market Basket Analysis
  • 124. Market Basket Analysis Using Rstudio
  • 125. Market Basket Analysis Using Rstudio Continues
  • 126. More on Rstudio in Market Analysis
  • 127. New Development in Machine Learning
  • 128. Data Scientist in Machine Learnirng
  • 129. Types of Detection in Machine Learning
  • 130. Example of New Development in Machine Learning
  • 131. Example of New Development in Machine Learning Continues

  • 2. Supervised Machine Learning with R 2023 - Linear Regression
  • 1. Working on Linear Regression
  • 2. Equation
  • 3. Making the Regression of the Algorithm
  • 4. Basic Types of Algorithms
  • 5. predicting the Salary of the Employee
  • 6. Making of Simple Linear Regression Model
  • 7. Plotting Training Set and Work
  • 8. Multiple Linear Regression
  • 9. Dummy Variable Concept
  • 10. Predictions Over Year
  • 11. Difference Between Reference Elimination
  • 12. Working of the Model
  • 13. Working on Another Dataset
  • 14. Backward Elimination Approach
  • 15. Making of the Model with Full and Null

  • 3. Machine Learning Project using Caret in R
  • 1. Intro to Machine Learning Project
  • 2. Starting with the Machine Learning Project
  • 3. Reading Files in the List
  • 4. Mapping the Missing Data
  • 5. Checking the Attributes
  • 6. Creating Lower Triangular Correlation Matrix
  • 7. Calculating Data Imbalance
  • 8. Choose the Imputation
  • 9. Preprocess the Imputed Data
  • 10. Make Clusters
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 33462
    حجم: 10850 مگابایت
    مدت زمان: 1492 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید