وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning with R

سرفصل های دوره

Learn how to use the R programming language for data science and machine learning and data visualization


1. Machine Learning with R
  • 1. Introduction to Machine Learning
  • 2. How do Machine Learn
  • 3. Steps to Apply Machine Learning
  • 4. Regression and Classification Problems
  • 5. Basic Data Manipulation in R
  • 6. More on Data Manipulation in R
  • 7. Basic Data Manipulation in R - Practical
  • 8. Create a Vector
  • 9. 2.7 Problem and Solution
  • 10. 2.10 Problem and Solution
  • 11. Exponentiation Right to Left
  • 12. 2.13 Avoiding Some Common Mistakes
  • 13. Simple Linear Regression
  • 14. Simple Linear Regression Continues
  • 15. What is Rsquare
  • 16. Standard Error
  • 17. General Statistics
  • 18. General Statistics Continues
  • 19. Simple Linear Regression and More of Statistics
  • 20. Open the Studio
  • 21. What is R Square
  • 22. What is STD Error
  • 23. Reject Null Hypothesis
  • 24. Variance Covariance and Correlation
  • 25. Root names and Types of Distribution Function
  • 26. Generating Random Numbers and Combination Function
  • 27. Probabilities for Discrete Distribution Function
  • 28. Quantile Function and Poison Distribution
  • 29. Students T Distribution, Hypothesis and Example
  • 30. Chai-Square Distribution
  • 31. Data Visualization
  • 32. More on Data Visualization
  • 33. Multiple Linear Regression
  • 34. Multiple Linear Regression Continues
  • 35. Regression Variables
  • 36. Generalized Linear Model
  • 37. Generalized Least Square
  • 38. KNN- Various Methods of Distance Measurements
  • 39. Overview of KNN- (Steps involved)
  • 40. Data normalization and prediction on Test Data
  • 41. Improvement of Model Performance and ROC
  • 42. Decision Tree Classifier
  • 43. More on Decision Tree Classifier
  • 44. Pruning of Decision Trees
  • 45. Decision Tree Remaining
  • 46. Decision Tree Remaining Continues
  • 47. General concept of Random Forest
  • 48. Ada Boosting and Ensemble Learning
  • 49. Data Visualization and Preparation
  • 50. Tuning Random Forest Model
  • 51. Evaluation of Random Forest Model Performance
  • 52. Introduction to Kmeans Clustering
  • 53. Kmeans Elbow Point and Dataset
  • 54. Example of Kmeans Dataset
  • 55. Creating a Graph for Kmeans Clustering
  • 56. Creating a Graph for Kmeans Clustering Continues
  • 57. Aggregation Function of Clustering
  • 58. Conditional Probability with Bayes Algorithm
  • 59. Venn Diagram Naive Bayes Classification
  • 60. Component OF Bayes Theorem using Frequency Table
  • 61. Naive Bayes Classification Algorithm and Laplace Estimator
  • 62. Example of Naive Bayes Classification
  • 63. Example of Naive Bayes Classification Continues
  • 64. Spam and Ham Messages in Word Cloud
  • 65. Implementation of Dictionary and Document Term Matrix
  • 66. Executes the Function Naive Bayes
  • 67. Support Vector Machine with Black Box Method
  • 68. Linearly and Non- Linearly Support Vector Machine
  • 69. Kernal Trick
  • 70. Gaussian RBF Kernal and OCR with SVMs
  • 71. Examples of Gaussian RBF Kernal and OCR with SVMs
  • 72. Summary of Support Vector Machine
  • 73. Feature Selection Dimension Reduction Technique
  • 74. Feature Extraction Dimension Reduction Technique
  • 75. Dimension Reduction Technique Example
  • 76. Dimension Reduction Technique Example Continues
  • 77. Introduction Principal Component Analysis
  • 78. Steps of PCA
  • 79. Steps of PCA Continues
  • 80. Eigen Values
  • 81. Eigen Vectors
  • 82. Principal Component Analysis using Pr-Comp
  • 83. Principal Component Analysis using Pr-Comp Continues
  • 84. C Bind Type in PCA
  • 85. R Type Model
  • 86. Black Box Method in Neural Network
  • 87. Characteristics of a Neural Networks
  • 88. Network Topology of a Neural Networks
  • 89. Weight Adjustment and Case Update
  • 90. Introduction Model Building in R
  • 91. Installing the Package of Model Building in R
  • 92. Nodes in Model Building in R
  • 93. Example of Model Building in R
  • 94. Time Series Analysis
  • 95. Pattern in Time Series Data
  • 96. Time Series Modelling
  • 97. Moving Average Model
  • 98. Auto Correlation Function
  • 99. Inference of ACF and PFCF
  • 100. Diagnostic Checking
  • 101. Forecasting Using Stock Price
  • 102. Stock Price Index
  • 103. Stock Price Index Continues
  • 104. Prophet Stock
  • 105. Run Prophet Stock
  • 106. Time Series Data Denationalization
  • 107. Time Series Data Denationalization Continues
  • 108. Average of Quarter Denationalization
  • 109. Regression of Denationalization
  • 110. Gradient Boosting Machines
  • 111. Errors in Gradient Boosting Machines
  • 112. What is Error Rate in Gradient Boosting Machines
  • 113. Optimization Gradient Boosting Machines
  • 114. Gradient Boosting Trees (GBT)
  • 115. Dataset Boosting in Gradient
  • 116. Example of Dataset Boosting in Gradient
  • 117. Example of Dataset Boosting in Gradient Continues
  • 118. Market Basket Analysis Association Rules
  • 119. Market Basket Analysis Association Rules Continues
  • 120. Market Basket Analysis Interpretation
  • 121. Implementation of Market Basket Analysis
  • 122. Example of Market Basket Analysis
  • 123. Datamining in Market Basket Analysis
  • 124. Market Basket Analysis Using Rstudio
  • 125. Market Basket Analysis Using Rstudio Continues
  • 126. More on Rstudio in Market Analysis
  • 127. New Development in Machine Learning
  • 128. Data Scientist in Machine Learnirng
  • 129. Types of Detection in Machine Learning
  • 130. Example of New Development in Machine Learning
  • 131. Example of New Development in Machine Learning Continues

  • 2. Supervised Machine Learning with R 2023 - Linear Regression
  • 1. Working on Linear Regression
  • 2. Equation
  • 3. Making the Regression of the Algorithm
  • 4. Basic Types of Algorithms
  • 5. predicting the Salary of the Employee
  • 6. Making of Simple Linear Regression Model
  • 7. Plotting Training Set and Work
  • 8. Multiple Linear Regression
  • 9. Dummy Variable Concept
  • 10. Predictions Over Year
  • 11. Difference Between Reference Elimination
  • 12. Working of the Model
  • 13. Working on Another Dataset
  • 14. Backward Elimination Approach
  • 15. Making of the Model with Full and Null

  • 3. Machine Learning Project using Caret in R
  • 1. Intro to Machine Learning Project
  • 2. Starting with the Machine Learning Project
  • 3. Reading Files in the List
  • 4. Mapping the Missing Data
  • 5. Checking the Attributes
  • 6. Creating Lower Triangular Correlation Matrix
  • 7. Calculating Data Imbalance
  • 8. Choose the Imputation
  • 9. Preprocess the Imputed Data
  • 10. Make Clusters
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 33462
    حجم: 10850 مگابایت
    مدت زمان: 1492 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید