وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning with Javascript

سرفصل های دوره

Master Machine Learning from scratch using Javascript and TensorflowJS with hands-on projects.


01 - What is Machine Learning
  • 001 Getting Started - How to Get Help
  • 002 Course Resources.html
  • 002 diagrams.zip
  • 003 Join Our Community!.html
  • 004 Solving Machine Learning Problems
  • 005 A Complete Walkthrough
  • 006 App Setup
  • 007 Problem Outline
  • 008 Identifying Relevant Data
  • 009 Dataset Structures
  • 010 Recording Observation Data
  • 011 What Type of Problem

  • 02 - Algorithm Overview
  • 001 How K-Nearest Neighbor Works
  • 002 Lodash Review
  • 003 Implementing KNN
  • 004 Finishing KNN Implementation
  • 005 Testing the Algorithm
  • 006 Interpreting Bad Results
  • 007 Test and Training Data
  • 008 Randomizing Test Data
  • 009 Generalizing KNN
  • 010 Gauging Accuracy
  • 011 Printing a Report
  • 012 Refactoring Accuracy Reporting
  • 013 Investigating Optimal K Values
  • 014 Updating KNN for Multiple Features
  • 015 Multi-Dimensional KNN
  • 016 N-Dimension Distance
  • 017 Arbitrary Feature Spaces
  • 018 Magnitude Offsets in Features
  • 019 Feature Normalization
  • 020 Normalization with MinMax
  • 021 Applying Normalization
  • 022 Feature Selection with KNN
  • 023 Objective Feature Picking
  • 024 Evaluating Different Feature Values

  • 03 - Onwards to Tensorflow JS!
  • 001 Lets Get Our Bearings
  • 002 A Plan to Move Forward
  • 003 Tensor Shape and Dimension
  • 004 Elementwise Operations
  • 005 Broadcasting Operations
  • 006 Logging Tensor Data
  • 007 Tensor Accessors
  • 008 Creating Slices of Data
  • 009 Tensor Concatenation
  • 010 Summing Values Along an Axis
  • 011 Massaging Dimensions with ExpandDims

  • 04 - Applications of Tensorflow
  • 001 KNN with Regression
  • 002 A Change in Data Structure
  • 003 KNN with Tensorflow
  • 004 Maintaining Order Relationships
  • 005 Sorting Tensors
  • 006 Averaging Top Values
  • 007 Moving to the Editor
  • 008 Loading CSV Data
  • 009 Running an Analysis
  • 010 Reporting Error Percentages
  • 011 Normalization or Standardization
  • 012 Numerical Standardization with Tensorflow
  • 013 Applying Standardization
  • 014 Debugging Calculations
  • 015 What Now

  • 05 - Getting Started with Gradient Descent
  • 001 Linear Regression
  • 002 Why Linear Regression
  • 003 Understanding Gradient Descent
  • 004 Guessing Coefficients with MSE
  • 005 Observations Around MSE
  • 006 Derivatives!
  • 007 Gradient Descent in Action
  • 008 Quick Breather and Review
  • 009 Why a Learning Rate
  • 010 Answering Common Questions
  • 011 Gradient Descent with Multiple Terms
  • 012 Multiple Terms in Action

  • 06 - Gradient Descent with Tensorflow
  • 001 Project Overview
  • 002 Data Loading
  • 003 Default Algorithm Options
  • 004 Formulating the Training Loop
  • 005 Initial Gradient Descent Implementation
  • 006 Calculating MSE Slopes
  • 007 Updating Coefficients
  • 008 Interpreting Results
  • 009 Matrix Multiplication
  • 010 More on Matrix Multiplication
  • 011 Matrix Form of Slope Equations
  • 012 Simplification with Matrix Multiplication
  • 013 How it All Works Together!

  • 07 - Increasing Performance with Vectorized Solutions
  • 001 Refactoring the Linear Regression Class
  • 002 Refactoring to One Equation
  • 003 A Few More Changes
  • 004 Same Results Or Not
  • 005 Calculating Model Accuracy
  • 006 Implementing Coefficient of Determination
  • 007 Dealing with Bad Accuracy
  • 008 Reminder on Standardization
  • 009 Data Processing in a Helper Method
  • 010 Reapplying Standardization
  • 011 Fixing Standardization Issues
  • 012 Massaging Learning Rates
  • 013 Moving Towards Multivariate Regression
  • 014 Refactoring for Multivariate Analysis
  • 015 Learning Rate Optimization
  • 016 Recording MSE History
  • 017 Updating Learning Rate

  • 08 - Plotting Data with Javascript
  • 001 Observing Changing Learning Rate and MSE
  • 002 Plotting MSE Values
  • 003 Plotting MSE History against B Values

  • 09 - Gradient Descent Alterations
  • 001 Batch and Stochastic Gradient Descent
  • 002 Refactoring Towards Batch Gradient Descent
  • 003 Determining Batch Size and Quantity
  • 004 Iterating Over Batches
  • 005 Evaluating Batch Gradient Descent Results
  • 006 Making Predictions with the Model

  • 10 - Natural Binary Classification
  • 001 Introducing Logistic Regression
  • 002 Logistic Regression in Action
  • 003 Bad Equation Fits
  • 004 The Sigmoid Equation
  • 005 Decision Boundaries
  • 006 Changes for Logistic Regression
  • 007 Project Setup for Logistic Regression
  • 008 Project Download.html
  • 008 regressions.zip
  • 009 Importing Vehicle Data
  • 010 Encoding Label Values
  • 011 Updating Linear Regression for Logistic Regression
  • 012 The Sigmoid Equation with Logistic Regression
  • 013 A Touch More Refactoring
  • 014 Gauging Classification Accuracy
  • 015 Implementing a Test Function
  • 016 Variable Decision Boundaries
  • 017 Mean Squared Error vs Cross Entropy
  • 018 Refactoring with Cross Entropy
  • 019 Finishing the Cost Refactor
  • 020 Plotting Changing Cost History

  • 11 - Multi-Value Classification
  • 001 Multinominal Logistic Regression
  • 002 A Smart Refactor to Multinominal Analysis
  • 003 A Smarter Refactor!
  • 004 A Single Instance Approach
  • 005 Refactoring to Multi-Column Weights
  • 006 A Problem to Test Multinominal Classification
  • 007 Classifying Continuous Values
  • 008 Training a Multinominal Model
  • 009 Marginal vs Conditional Probability
  • 010 Sigmoid vs Softmax
  • 011 Refactoring Sigmoid to Softmax
  • 012 Implementing Accuracy Gauges
  • 013 Calculating Accuracy

  • 12 - Image Recognition In Action
  • 001 Handwriting Recognition
  • 002 Greyscale Values
  • 003 Many Features
  • 004 Flattening Image Data
  • 005 Encoding Label Values
  • 006 Implementing an Accuracy Gauge
  • 007 Unchanging Accuracy
  • 008 Debugging the Calculation Process
  • 009 Dealing with Zero Variances
  • 010 Backfilling Variance

  • 13 - Performance Optimization
  • 001 Handing Large Datasets
  • 002 Minimizing Memory Usage
  • 003 Creating Memory Snapshots
  • 004 The Javascript Garbage Collector
  • 005 Shallow vs Retained Memory Usage
  • 006 Measuring Memory Usage
  • 007 Releasing References
  • 008 Measuring Footprint Reduction
  • 009 Optimization Tensorflow Memory Usage
  • 010 Tensorflows Eager Memory Usage
  • 011 Cleaning up Tensors with Tidy
  • 012 Implementing TF Tidy
  • 013 Tidying the Training Loop
  • 014 Measuring Reduced Memory Usage
  • 015 One More Optimization
  • 016 Final Memory Report
  • 017 Plotting Cost History
  • 018 NaN in Cost History
  • 019 Fixing Cost History
  • 020 Massaging Learning Parameters
  • 021 Improving Model Accuracy

  • 14 - Appendix Custom CSV Loader
  • 001 Loading CSV Files
  • 002 A Test Dataset
  • 003 Reading Files from Disk
  • 004 Splitting into Columns
  • 005 Dropping Trailing Columns
  • 006 Parsing Number Values
  • 007 Custom Value Parsing
  • 008 Extracting Data Columns
  • 009 Shuffling Data via Seed Phrase
  • 010 Splitting Test and Training

  • 15 - Extras
  • 001 Bonus!.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 20777
    حجم: 6914 مگابایت
    مدت زمان: 1060 دقیقه
    تاریخ انتشار: ۱۵ مهر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید