وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Machine Learning, incl. Deep Learning, with R

سرفصل های دوره

Statistical Machine Learning Techniques, and Deep Learning with Keras, and much more. (All R code included)


1 - Introduction
  • 1 - Course Overview
  • 2 - AI 101
  • 3 - Machine Learning 101
  • 4 - Models
  • 5 - Teaser Overview
  • 6 - PCA-Teaser.zip
  • 6 - PCA-Teaser-Final.html
  • 6 - Teaser Lab

  • 2 - R Refresher
  • 7 - R and RStudio Installation
  • 8 - How to get the code
  • 9 - Rmarkdown Lab
  • 10 - Piping 101
  • 11 - Data Manipulation Lab
  • 12 - Data Reshaping 101
  • 13 - Data Reshaping Lab
  • 14 - Packages Preparation Lab

  • 3 - Regression Model Preparation and Regularization
  • 15 - Section Overview.html
  • 16 - How to get the code

  • 4 - Regression
  • 17 - Regression Types 101
  • 18 - Univariate Regression 101
  • 19 - Univariate Regression Interactive
  • 20 - Univariate Regression Lab
  • 21 - Univariate Regression Exercise
  • 22 - Univariate Regression Solution
  • 23 - Polynomial Regression 101
  • 24 - Polynomial Regression Lab
  • 25 - Multivariate Regression 101
  • 26 - Multivariate Regression Lab
  • 27 - Multivariate Regression Exercise
  • 28 - Multivariate Regression Solution

  • 5 - Model Preparation and Evaluation
  • 29 - Underfitting Overfitting 101
  • 30 - Train Validation Test Split 101
  • 31 - Train Validation Test Split Interactive
  • 32 - Train Validation Test Split Lab
  • 33 - Resampling Techniques 101
  • 34 - Resampling Techniques Lab

  • 6 - Regularization
  • 35 - Regularization 101
  • 36 - Regularization Lab

  • 7 - Classification
  • 37 - Classification Introduction.html
  • 38 - How to get the code

  • 8 - Classification Basics
  • 39 - Confusion Matrix 101
  • 40 - ROC Curve 101
  • 41 - ROC Curve Interactive
  • 42 - ROC Curve Lab Intro
  • 43 - ROC Curve Lab 13 Data Prep Modeling
  • 44 - ROC Curve Lab 23 Confusion Matrix and ROC
  • 45 - ROC Curve Lab 33 ROC AUC Cost Function

  • 9 - Decision Trees
  • 46 - Decision Trees 101
  • 47 - Decision Trees Lab Intro
  • 48 - Decision Trees Lab Coding
  • 49 - Decision Trees Exercise

  • 10 - Random Forests
  • 50 - Random Forests 101
  • 51 - Random Forests Interactive
  • 52 - Random Forest Lab Intro
  • 53 - Random Forest Lab Coding 12
  • 54 - Random Forest Lab Coding 22
  • 55 - Random Forest Exercise

  • 11 - Logistic Regression
  • 56 - Logistic Regression 101
  • 57 - Logistic Regression Lab Intro
  • 58 - Logistic Regression Lab Coding 12
  • 59 - Logistic Regression Lab Coding 22
  • 60 - Logistic Regression Exercise

  • 12 - Support Vector Machines
  • 61 - Support Vector Machines 101
  • 62 - Support Vector Machines Lab Intro
  • 63 - Support Vector Machines Lab Coding 12
  • 64 - Support Vector Machines Lab Coding 22
  • 65 - Support Vector Machines Exercise

  • 13 - Ensemble Models
  • 66 - Ensemble Models 101

  • 14 - Association Rules
  • 67 - Association Rules 101
  • 68 - How to get the code

  • 15 - Apriori
  • 69 - Apriori 101
  • 70 - Apriori Lab Intro
  • 71 - Apriori Lab Coding 12
  • 72 - Apriori Lab Coding 22
  • 73 - Apriori Exercise
  • 74 - Apriori Solution

  • 16 - Clustering
  • 75 - Clustering Overview
  • 76 - How to get the code

  • 17 - kmeans
  • 77 - kmeans 101
  • 78 - kmeans Lab
  • 79 - kmeans Exercise
  • 80 - kmeans Solution

  • 18 - Hierarchical Clustering
  • 81 - Hierarchical Clustering 101
  • 82 - Hierarchical Clustering Interactive
  • 83 - Hierarchical Clustering Lab

  • 19 - Dbscan
  • 84 - Dbscan 101
  • 85 - Dbscan Lab

  • 20 - Dimensionality Reduction
  • 86 - Dimensionality Reduction Overview.html

  • 21 - Principal Component Analysis PCA
  • 87 - PCA 101
  • 88 - PCA Lab
  • 89 - PCA Exercise
  • 90 - PCA Solution

  • 22 - tSNE
  • 91 - tSNE 101
  • 92 - tSNE Lab Sphere
  • 93 - tSNE Lab Mnist

  • 23 - Factor Analysis
  • 94 - Factor Analysis 101
  • 95 - Factor Analysis Lab Intro
  • 96 - Factor Analysis Lab Coding 12
  • 97 - Factor Analysis Lab Coding 22
  • 98 - Factor Analysis Exercise

  • 24 - Reinforcement Learning
  • 99 - Reinforcement Learning 101
  • 100 - Upper Confidence Bound 101
  • 101 - Upper Confidence Bound Interactive
  • 102 - How to get the code
  • 103 - Upper Confidence Bound Lab Intro
  • 104 - Upper Confidence Bound Lab Coding 12
  • 105 - Upper Confidence Bound Lab Coding 22

  • 25 - Deep Learning
  • 106 - Deep Learning General Overview
  • 107 - Deep Learning Modeling 101
  • 108 - Performance
  • 109 - From Perceptron to Neural Networks
  • 110 - Layer Types
  • 111 - Activation Functions
  • 112 - Loss Function
  • 113 - Optimizer
  • 114 - Deep Learning Frameworks
  • 115 - How to get the code
  • 116 - Python and Keras Installation

  • 26 - Deep Learning Regression
  • 117 - MultiTarget Regression Lab Intro
  • 118 - MultiTarget Regression Lab Coding 12
  • 119 - MultiTarget Regression Lab Coding 22

  • 27 - Deep Learning Classification
  • 120 - Binary Classification Lab Intro
  • 121 - Binary Classification Lab Coding 12
  • 122 - Binary Classification Lab Coding 22
  • 123 - MultiLabel Classification Lab Intro
  • 124 - MultiLabel Classification Lab Coding 13
  • 125 - MultiLabel Classification Lab Coding 23
  • 126 - MultiLabel Classification Lab Coding 33

  • 28 - Convolutional Neural Networks
  • 127 - Convolutional Neural Networks 101
  • 128 - Convolutional Neural Networks Interactive
  • 129 - Convolutional Neural Networks Lab Intro
  • 130 - Convolutional Neural Networks Lab Coding
  • 131 - Convolutional Neural Networks Exercise
  • 132 - Semantic Segmentation 101
  • 133 - Semantic Segmentation Lab Intro
  • 134 - Semantic Segmentation Lab Coding

  • 29 - Autoencoders
  • 135 - Autoencoders 101
  • 136 - Autoencoders Lab Intro
  • 137 - Autoencoders Lab Coding

  • 30 - Transfer Learning and Pretrained Models
  • 138 - Transfer Learning and Pretrained Models 101
  • 139 - Transfer Learning and Pretrained Models Lab Introduction
  • 140 - Transfer Learning and Pretrained Models Lab Coding

  • 31 - Recurrent Neural Networks
  • 141 - Recurrent Neural Networks 101
  • 142 - LSTM Univariate Multistep Timeseries Prediction Intro
  • 143 - LSTM Univariate Multistep Timeseries Prediction Coding
  • 144 - LSTM Multivariate Multistep Timeseries Prediction Intro
  • 145 - LSTM Multivariate Multistep Timeseries Prediction Coding

  • 32 - Bonus
  • 146 - Congratulations and thank you.html
  • 147 - Bonus lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 211
    حجم: 7444 مگابایت
    مدت زمان: 924 دقیقه
    تاریخ انتشار: 22 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید