وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Deep Reinforcement Learning made-easy

سرفصل های دوره

Reinforcement Learning for beginners to advanced learners


1 - Introduction
  • 1 -Introduction to Deep Reinforcement Learning
  • 2 -Reinforcement Learning and its main components (agent, environment, rewards)
  • 3 -Comparison with supervised and unsupervised learning
  • 4 -Overview of the RL history
  • 5 -Recent advances in Deep Reinforcement Learning
  • 6 -Learning objectives for the course and Introduction to Python

  • 2 - Artificial Neural Network (ANN)
  • 1 -ANN algorithm Nontechnical explanation
  • 2 -ANN algorithm Mathematical Formulae
  • 3 -ANN algorithm A Worked-Out Example

  • 3 - ANN to Deep Neural Network (DNN)
  • 1 -Deep Neural Network
  • 2 -Deep learning frameworks
  • 3 -Introduction to TensorFlow and Keras
  • 4 -Key terms in TensorFlow
  • 5 -KERAS
  • 6 -The concept of gradient descent
  • 7 -Learning rate

  • 4 - Deep Learning Hyperparameters Regularization
  • 1 -Hyper parameters in Machine Learning
  • 2 -L1 and L2 Regularization in Regression
  • 3 -Regularization in Neural networks
  • 4 -Regularization in Regression
  • 5 -Data standardization in L1 and L2 regularization
  • 6 -Dropout Regularization
  • 7 -Early stopping method for neural networks
  • 8 -Saving the Model

  • 5 - Deep Learning Hyper parameters, Activation Functions and Optimizations
  • 1 -Loss Functions
  • 2 -Activation Functions
  • 3 -Activation Function Sigmoid
  • 4 -Activation Function Tanh
  • 5 -Activation Function ReLU
  • 6 -Activation Function SoftMax
  • 7 -Optimizers SGD, Mini-batch descent

  • 6 - Convolutional Neural Network (CNN)
  • 1 -Introduction to CNN
  • 2 -Artificial Neural network vs Convolutional Neural Network (ANN vs CNN)
  • 3 -Filters or kernels

  • 7 - Recurrent Neural Network (RNN)
  • 1 -Cross-sectional data vs sequential data
  • 2 -Models for sequential data ANN, CNN and Sequential ANN
  • 3 -Case study of word prediction
  • 4 -Introduction to RNN
  • 5 -Python Code Model Training of CNN and RNN

  • 8 - Reinforcement Learning Overview of Markov Decision Processes
  • 1 -Review of Reinforcement Learning
  • 2 -Introduction to Value Function Approximation
  • 3 -Python Code Value Function Approximation using CartPole
  • 4 -Linear function approximation
  • 5 -Python Code Linear Function Approximation using CartPole
  • 6 -Non-linear function approximation with deep neural networks
  • 7 -Python Code Non-Linear Function Approximation with Neural Networks
  • 8 -Applications and limitations of Value Function Approximation
  • 9 -Definition of Markov Decision Processes (MDPs)
  • 10 -Python Code MDPs and Bellman Equations and Value Functions
  • 11 -Key components of an MDP
  • 12 -Bellman Equations and Value Functions
  • 13 -Policy iteration and value iteration algorithms
  • 14 -Python Code Policy iteration and value iteration algorithms

  • 9 - Bellman Equations and Value Functions
  • 1 -Python Code Introduction to Python Gym Library Documentation
  • 2 -Review of Bellman Equations
  • 3 -Definition of value functions (state value, action value)
  • 4 -Calculation of value functions using Bellman Equations
  • 5 -Intuitive interpretation of value functions
  • 6 -Markov Processes
  • 7 -Markov Reward Processes
  • 8 -Markov Decision Processes
  • 9 -Extensions to MDPs

  • 10 - Deep Reinforcement Learning with Q-Learning
  • 1 -Definition of Q-Learning
  • 2 -Calculation of Q-Values using Q-Learning
  • 3 -Python Code Q-Learning and Python Gym library
  • 4 -Comparison of Q-Learning with policy iteration and value iteration algorithms
  • 5 -Advantages and disadvantages of Q-Learning
  • 6 -Overview of Deep Q-Network (DQN) algorithm
  • 7 -Architecture of a DQN model
  • 8 -Implementation of DQN in TensorFlow
  • 9 -Python Code Implementation of DQN
  • 10 -Applications and limitations of DQN

  • 11 - Model-Free Prediction
  • 1 -Definition of Model-Free Prediction
  • 2 -Calculation of state values using Model-Free Prediction methods
  • 3 -Monte Carlo
  • 4 -Python Code Monte Carlo Algorithm
  • 5 -TD Learning
  • 6 -Python Code Temporal Difference (TD) Learning Algorithm
  • 7 -Python Code SARSA Algorithm
  • 8 -Discussion of the limitations of Model-Free Prediction
  • 9 -Python Code Expected SARSA Algorithm
  • 10 -Python Code n-Steps SARSA Algorithm
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44333
    حجم: 6964 مگابایت
    مدت زمان: 681 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید