وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Deep Reinforcement Learning made-easy

سرفصل های دوره

Reinforcement Learning for beginners to advanced learners


1 - Introduction
  • 1 -Introduction to Deep Reinforcement Learning
  • 2 -Reinforcement Learning and its main components (agent, environment, rewards)
  • 3 -Comparison with supervised and unsupervised learning
  • 4 -Overview of the RL history
  • 5 -Recent advances in Deep Reinforcement Learning
  • 6 -Learning objectives for the course and Introduction to Python

  • 2 - Artificial Neural Network (ANN)
  • 1 -ANN algorithm Nontechnical explanation
  • 2 -ANN algorithm Mathematical Formulae
  • 3 -ANN algorithm A Worked-Out Example

  • 3 - ANN to Deep Neural Network (DNN)
  • 1 -Deep Neural Network
  • 2 -Deep learning frameworks
  • 3 -Introduction to TensorFlow and Keras
  • 4 -Key terms in TensorFlow
  • 5 -KERAS
  • 6 -The concept of gradient descent
  • 7 -Learning rate

  • 4 - Deep Learning Hyperparameters Regularization
  • 1 -Hyper parameters in Machine Learning
  • 2 -L1 and L2 Regularization in Regression
  • 3 -Regularization in Neural networks
  • 4 -Regularization in Regression
  • 5 -Data standardization in L1 and L2 regularization
  • 6 -Dropout Regularization
  • 7 -Early stopping method for neural networks
  • 8 -Saving the Model

  • 5 - Deep Learning Hyper parameters, Activation Functions and Optimizations
  • 1 -Loss Functions
  • 2 -Activation Functions
  • 3 -Activation Function Sigmoid
  • 4 -Activation Function Tanh
  • 5 -Activation Function ReLU
  • 6 -Activation Function SoftMax
  • 7 -Optimizers SGD, Mini-batch descent

  • 6 - Convolutional Neural Network (CNN)
  • 1 -Introduction to CNN
  • 2 -Artificial Neural network vs Convolutional Neural Network (ANN vs CNN)
  • 3 -Filters or kernels

  • 7 - Recurrent Neural Network (RNN)
  • 1 -Cross-sectional data vs sequential data
  • 2 -Models for sequential data ANN, CNN and Sequential ANN
  • 3 -Case study of word prediction
  • 4 -Introduction to RNN
  • 5 -Python Code Model Training of CNN and RNN

  • 8 - Reinforcement Learning Overview of Markov Decision Processes
  • 1 -Review of Reinforcement Learning
  • 2 -Introduction to Value Function Approximation
  • 3 -Python Code Value Function Approximation using CartPole
  • 4 -Linear function approximation
  • 5 -Python Code Linear Function Approximation using CartPole
  • 6 -Non-linear function approximation with deep neural networks
  • 7 -Python Code Non-Linear Function Approximation with Neural Networks
  • 8 -Applications and limitations of Value Function Approximation
  • 9 -Definition of Markov Decision Processes (MDPs)
  • 10 -Python Code MDPs and Bellman Equations and Value Functions
  • 11 -Key components of an MDP
  • 12 -Bellman Equations and Value Functions
  • 13 -Policy iteration and value iteration algorithms
  • 14 -Python Code Policy iteration and value iteration algorithms

  • 9 - Bellman Equations and Value Functions
  • 1 -Python Code Introduction to Python Gym Library Documentation
  • 2 -Review of Bellman Equations
  • 3 -Definition of value functions (state value, action value)
  • 4 -Calculation of value functions using Bellman Equations
  • 5 -Intuitive interpretation of value functions
  • 6 -Markov Processes
  • 7 -Markov Reward Processes
  • 8 -Markov Decision Processes
  • 9 -Extensions to MDPs

  • 10 - Deep Reinforcement Learning with Q-Learning
  • 1 -Definition of Q-Learning
  • 2 -Calculation of Q-Values using Q-Learning
  • 3 -Python Code Q-Learning and Python Gym library
  • 4 -Comparison of Q-Learning with policy iteration and value iteration algorithms
  • 5 -Advantages and disadvantages of Q-Learning
  • 6 -Overview of Deep Q-Network (DQN) algorithm
  • 7 -Architecture of a DQN model
  • 8 -Implementation of DQN in TensorFlow
  • 9 -Python Code Implementation of DQN
  • 10 -Applications and limitations of DQN

  • 11 - Model-Free Prediction
  • 1 -Definition of Model-Free Prediction
  • 2 -Calculation of state values using Model-Free Prediction methods
  • 3 -Monte Carlo
  • 4 -Python Code Monte Carlo Algorithm
  • 5 -TD Learning
  • 6 -Python Code Temporal Difference (TD) Learning Algorithm
  • 7 -Python Code SARSA Algorithm
  • 8 -Discussion of the limitations of Model-Free Prediction
  • 9 -Python Code Expected SARSA Algorithm
  • 10 -Python Code n-Steps SARSA Algorithm
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44333
    حجم: 6964 مگابایت
    مدت زمان: 681 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید