وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Deep Learning for Everyone – 2023 – Tensorflow Updated

سرفصل های دوره

Go from Beginner to Expert with building intuition on single neuron till deep neural networks in Keras & tensorflow


01 - Welcome
  • 001 Introduction to Deep Learning 101

  • 02 - Getting basics right
  • 001 Artificial Neural Networks
  • 002 Activation Function
  • 003 Bias
  • 004 Data
  • 005 Applications of Data
  • 006 Models
  • 007 Loss Functions
  • 008 Learning Algorithms & Model Performance

  • 03 - Python Crash Course on Basics
  • 001 Getting System Ready - Jupyter Notebook
  • 002 Accessing Google Colab Notebook
  • 003 Download Materials.html
  • 003 Python-Crash-Course.zip
  • 004 Python Basics - Data Types
  • 005 Python Basics - Containers in Python
  • 006 Control Statements Python if..else
  • 007 Python Control statments - While and For
  • 008 Functions & Classes in Python

  • 04 - Python for Data Science Crash Course
  • 001 Numpy Part 1
  • 002 Numpy Part 2
  • 003 Numpy Part 3
  • 004 Pandas in Python - Pandas Series
  • 005 Pandas Data Frame
  • 006 Pandas Data frame - cleaning & Examining the data
  • 007 Plotting with Matplotlib
  • 008 Contour Plots

  • 05 - MP Neuron Model
  • 001 MP Neuron Introduction
  • 002 Intuition of data
  • 003 Loss & finding parameters
  • 004 Mathematical Intuition

  • 06 - MP Neuron in Python
  • 001 Deep-Learning-MP-Neuron.zip
  • 001 Download Materials.html
  • 002 MP Neuron - Data import
  • 003 Train Test Split
  • 004 Modify Data
  • 005 MP Neuron in Python
  • 006 MP Neuron Class
  • 007 Assignment for MP Neuron in Python.html
  • 007 MP-Neuron-Assignment.zip

  • 07 - Summary of MP Neuron
  • 001 Summary of MP Neuron

  • 08 - Perceptron
  • 001 Perceptron
  • 002 Perceptron Model and its representation
  • 003 Loss function & Parameter Update
  • 004 Why Update Rule Works
  • 005 Update Rule in Programs

  • 09 - Perceptron in Python
  • 001 Download Materials.html
  • 001 Perceptron-Implementation.zip
  • 002 Perceptron in Python
  • 003 Visualize the Accuracy with epochs
  • 004 Perceptron Assignment.html
  • 004 Perceptron-Assignment.zip

  • 10 - Sigmoid Neuron
  • 001 Download Materials.html
  • 001 Sigmoid-Neuron-Intuition.zip
  • 002 Percepron Limitations
  • 003 Sigmoid Neuron Introduction
  • 004 Sigmoid Neuron Data
  • 005 Sigmoid Intuition
  • 006 Manual fitting of data
  • 007 Gradient descent
  • 008 Program overview
  • 009 Program in Python

  • 11 - Sigmoid Neuron Implement with Python
  • 001 Download Materials.html
  • 001 Sigmoid-Neuron-Heart-Disease-dataset.zip
  • 002 Download Dataset
  • 002 heart-disease-uci.zip
  • 003 Data Standardization -1
  • 004 Data Standardization - 2
  • 005 Class Sigmoid
  • 006 Sigmoid Assignment.html
  • 006 Sigmoid-Neuron-Assignment.zip

  • 12 - Basic Probability
  • 001 Introduction to Probability and Random Variables
  • 002 Why Random Variable is important
  • 003 Random Variable - Types
  • 004 Probability Distribution Table
  • 005 Why do we require Entropy Loss

  • 13 - Why Deep Neural Networks - Intuition
  • 001 Download Materials.html
  • 001 Why-DeepLearning-Neural-Networks.zip
  • 002 Why Deep Neural Networks
  • 003 Linear Separation of Data

  • 14 - Universal Approximation Theorem - Deep Learning Foundation
  • 001 Understanding Universal Approximation Theorem
  • 002 Confirming Universal Approximation Theorem Works
  • 003 Going deep into Neural Networks
  • 004 Challenges in Creating Deep Neural Networks from Scratch

  • 15 - Deep Learning with Tensorflow 2.x
  • 001 1-creating-first-nn-with-tf-2-x.zip
  • 001 Code File for this section.html
  • 002 Deep Neural Networks - Recap
  • 003 Introducing Tensorflow
  • 004 Building a Neural Network with Tensorflow
  • 005 Create First Neural Network with Tensorflow
  • 006 Training the Deep Neural Network
  • 007 Training Evaluation
  • 008 Summary

  • 16 - Activation Functions in Deep Learning Neural Networks
  • 001 Code File for this Section.html
  • 001 activation-functions-in-tensorflow.zip
  • 002 Activation Functions in Deep Learning Neural Networks - Introduction
  • 003 Various Activation Functions
  • 004 Summary on Activation Functions
  • 005 Common Network Configuration

  • 17 - Applying the Deep learning
  • 001 Moving from Shallow learning to Deep learning
  • 002 Assignment File for Deep learning neural networks.html
  • 002 Assignment-File-for-DeepLearning-Neural-Networks.zip
  • 003 Keras Basics
  • 004 DeepLearning-Multi-Class-Classification.zip
  • 004 Deep-Learning-Regression.zip
  • 004 Download Materials.html
  • 005 Types of Problems
  • 006 ReLU , Softmax & Cross Entropy
  • 007 DeepLearning-Multi-Class-Classification.zip
  • 007 Implementing Multi Class classification using keras
  • 008 Deep-Learning-Regression.zip
  • 008 Regression Problem
  • 009 Tensorflow Advanced Tricks - Ways to create Neural Network
  • 010 Tensorflow - Subclassing Methods
  • 011 Bonus - Get More of Learning Journey.html

  • 18 - Machine Learning for Projects
  • 001 Machine learning Deployment Part 1 - Model Prep - End to End
  • 002 Machine learning Deployment Part 2 - Deploy Flask App - End to End
  • 003 Streamlit Tutorial
  • 004 Additional content to support your learning journey.html
  • 005 Course Intro to MLOps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 19059
    حجم: 2847 مگابایت
    مدت زمان: 602 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید