وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Visualization with Python Masterclass | Python A-Z

سرفصل های دوره

Python Data visualization: Python data analysis and visualization, Machine Learning, Deep Learning, Pandas, Matplotlib


01 - Code Files And Resources Python data analysis and visualization
  • 001 Section 6 Data Visualisation - Matplotlib Files.html
  • 002 Section 7 Data Visualisation - Seaborn Files.html
  • 003 Section 9 Data Visualisation - Geoplotlib.html
  • 003 world-cities-pop.csv

  • 02 - Introduction to Data Visualization with Python
  • 001 Introduction to Data Visualization with Python
  • 002 FAQ regarding Data Visualization, Python.html

  • 03 - Python Setup
  • 001 Installing Anaconda Distribution For Windows
  • 002 Installing Anaconda Distribution For Mac
  • 003 Installing Anaconda Distribution For Linux
  • 004 Overview of Jupyter Notebook and Google Colab

  • 04 - Fundamentals of Python 3
  • 001 Data Types in Python
  • 002 Operators in Python
  • 003 Conditionals in Python
  • 004 Loops in Python
  • 005 Lists, Tuples, Dictionaries and Sets in pyhton
  • 006 Data Type Operators and Methods in Python
  • 007 Modules in Python
  • 008 Functions in Python
  • 009 Exercise - Analyse in Python
  • 010 Exercise - Solution in Python

  • 05 - Object Oriented Programming (OOP)
  • 001 Logic of Object Oriented Programming
  • 002 Constructor in Object Oriented Programming (OOP)
  • 003 Methods in Object Oriented Programming (OOP)
  • 004 Inheritance in Object Oriented Programming (OOP)
  • 005 Overriding and Overloading in Object Oriented Programming (OOP)

  • 06 - Fundamentals of Data Science
  • 001 What is Data Science
  • 002 Data Literacy
  • 003 Introduction to NumPy Library
  • 004 Notebook Project Files Link regarding NumPy Python Programming Language Library.html
  • 005 The Power of NumPy
  • 006 6 Article Advice And Links about Numpy, Numpy Pyhon.html
  • 007 Creating NumPy Array with The Array() Function
  • 008 Creating NumPy Array with Zeros() Function
  • 009 Creating NumPy Array with Ones() Function
  • 010 Creating NumPy Array with Full() Function
  • 011 Creating NumPy Array with Arange() Function
  • 012 Creating NumPy Array with Eye() Function
  • 013 Creating NumPy Array with Linspace() Function
  • 014 Creating NumPy Array with Random() Function
  • 015 Properties of NumPy Array
  • 016 Reshaping a NumPy Array Reshape() Function
  • 017 Identifying the Largest Element of a Numpy Array
  • 018 Detecting Least Element of Numpy Array Min(), Ar
  • 019 Concatenating Numpy Arrays Concatenate() Functio
  • 020 Splitting One-Dimensional Numpy Arrays The Split
  • 021 Splitting Two-Dimensional Numpy Arrays Split(),
  • 022 Sorting Numpy Arrays Sort() Function
  • 023 Indexing Numpy Arrays
  • 024 Slicing One-Dimensional Numpy Arrays
  • 025 Slicing Two-Dimensional Numpy Arrays
  • 026 Assigning Value to One-Dimensional Arrays
  • 027 Assigning Value to Two-Dimensional Array
  • 028 Fancy Indexing of One-Dimensional Arrrays
  • 029 Fancy Indexing of Two-Dimensional Arrrays
  • 030 Combining Fancy Index with Normal Indexing
  • 031 Combining Fancy Index with Normal Slicing
  • 032 Operations with Comparison Operators
  • 033 Arithmetic Operations in Numpy
  • 034 Statistical Operations in Numpy
  • 035 Solving Second-Degree Equations with NumPy
  • 036 Introduction to Pandas Library
  • 037 Pandas Project Files Link.html
  • 038 Creating a Pandas Series with a List
  • 039 Creating a Pandas Series with a Dictionary
  • 040 Creating Pandas Series with NumPy Array
  • 041 Object Types in Series
  • 042 Examining the Primary Features of the Pandas Series
  • 043 Most Applied Methods on Pandas Series
  • 044 Indexing and Slicing Pandas Series
  • 045 Creating Pandas DataFrame with List
  • 046 Creating Pandas DataFrame with NumPy Array
  • 047 Creating Pandas DataFrame with Dictionary
  • 048 Examining the Properties of Pandas DataFrames
  • 049 Element Selection Operations in Pandas DataFrames Lesson 1
  • 050 Element Selection Operations in Pandas DataFrames Lesson 2
  • 051 Top Level Element Selection in Pandas DataFramesLesson 1
  • 052 Top Level Element Selection in Pandas DataFramesLesson 2
  • 053 Top Level Element Selection in Pandas DataFramesLesson 3
  • 054 Element Selection with Conditional Operations in Pandas Data Frames
  • 055 Adding Columns to Pandas Data Frames
  • 056 Removing Rows and Columns from Pandas Data frames
  • 057 Null Values in pandas Dataframes
  • 058 Dropping Null Values Dropna() Function
  • 059 Filling Null Values Fillna() Function
  • 060 Setting Index in Pandas DataFrames
  • 061 Multi-Index and Index Hierarchy in Pandas DataFrames
  • 062 Element Selection in Multi-Indexed DataFrames
  • 063 Selecting Elements Using the xs() Function in Multi-Indexed DataFrames
  • 064 Concatenating Pandas Dataframes Concat Function
  • 065 Merge Pandas Dataframes Merge() Function Lesson 1
  • 066 Merge Pandas Dataframes Merge() Function Lesson 2
  • 067 Merge Pandas Dataframes Merge() Function Lesson 3
  • 068 Merge Pandas Dataframes Merge() Function Lesson 4
  • 069 Joining Pandas Dataframes Join() Function
  • 070 Loading a Dataset from the Seaborn Library
  • 071 Examining the Data Set 1
  • 072 Aggregation Functions in Pandas DataFrames
  • 073 Examining the Data Set 2
  • 074 Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes
  • 075 Advanced Aggregation Functions Aggregate() Function
  • 076 Advanced Aggregation Functions Filter() Function
  • 077 Advanced Aggregation Functions Transform() Function
  • 078 Advanced Aggregation Functions Apply() Function
  • 079 Examining the Data Set 3
  • 080 Pivot Tables in Pandas Library
  • 081 Accessing and Making Files Available
  • 082 Data Entry with Csv and Txt Files
  • 083 Data Entry with Excel Files
  • 084 Outputting as an CSV Extension
  • 085 Outputting as an Excel File

  • 07 - optional recap exercises and bouns info from the numpy library
  • 001 What is Numpy
  • 002 Why Numpy
  • 003 Array and features in Python Numpy
  • 004 Arrays Operators in Python Numpy
  • 005 Numpy Functions in Python Numpy
  • 006 Indexing and Slicing in Python Numpy
  • 007 Numpy Exercises in Python Numpy

  • 08 - Optional Recap Exercises and Bonus info from the Pandas Library
  • 001 What is Pandas
  • 002 Series and Features in Pandas
  • 003 Data Frame attributes and Methods in Pandas
  • 004 Groupby Operations in Pandas
  • 005 Combining DataFrames I in Pandas
  • 006 Combining DataFrames II in Pandas
  • 007 Work with CSV Files in Pandas

  • 09 - Matplotlib
  • 001 What is Matplotlib
  • 002 Using Pyplot
  • 003 Pyplot Pylab - Matplotlib
  • 004 Figure, Subplot and Axes
  • 005 Figure Customization
  • 006 Plot Customization
  • 007 Grid, Spines, Ticks
  • 008 Basic Plots in Matplotlib I
  • 008 age-data.csv
  • 008 scatter-ex.xlsx
  • 009 Basic Plots in Matplotlib II
  • 009 winequality.csv

  • 10 - Seaborn
  • 001 What is Seaborn
  • 002 Controlling Figure Aesthetics in Seaborn
  • 003 Example in Seaborn
  • 003 scores.csv
  • 004 Color Palettes in Seaborn
  • 004 flight-details.csv
  • 005 Basic Plots in Seaborn
  • 005 basic-details.csv
  • 005 movie-scores.csv
  • 005 salary.csv
  • 005 scores.csv
  • 005 youtube.csv
  • 006 Multi-Plots in Seaborn
  • 007 Regression Plots and Squarify in Seaborn
  • 007 age-data.csv
  • 007 water-usage.csv

  • 11 - Geoplotlib
  • 001 What is Geoplotlib
  • 002 Example - 1
  • 002 poaching-points-cleaned.csv
  • 003 Example - 2
  • 003 world-cities-pop.csv
  • 004 Example - 3

  • 12 - Extra
  • 001 Data Visualization with Python Masterclass Python A-Z.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 17062
    حجم: 5538 مگابایت
    مدت زمان: 1228 دقیقه
    تاریخ انتشار: ۸ مرداد ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید