وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Visualization with Python Masterclass | Python A-Z

سرفصل های دوره

Python Data visualization: Python data analysis and visualization, Machine Learning, Deep Learning, Pandas, Matplotlib


01 - Code Files And Resources Python data analysis and visualization
  • 001 Section 6 Data Visualisation - Matplotlib Files.html
  • 002 Section 7 Data Visualisation - Seaborn Files.html
  • 003 Section 9 Data Visualisation - Geoplotlib.html
  • 003 world-cities-pop.csv

  • 02 - Introduction to Data Visualization with Python
  • 001 Introduction to Data Visualization with Python
  • 002 FAQ regarding Data Visualization, Python.html

  • 03 - Python Setup
  • 001 Installing Anaconda Distribution For Windows
  • 002 Installing Anaconda Distribution For Mac
  • 003 Installing Anaconda Distribution For Linux
  • 004 Overview of Jupyter Notebook and Google Colab

  • 04 - Fundamentals of Python 3
  • 001 Data Types in Python
  • 002 Operators in Python
  • 003 Conditionals in Python
  • 004 Loops in Python
  • 005 Lists, Tuples, Dictionaries and Sets in pyhton
  • 006 Data Type Operators and Methods in Python
  • 007 Modules in Python
  • 008 Functions in Python
  • 009 Exercise - Analyse in Python
  • 010 Exercise - Solution in Python

  • 05 - Object Oriented Programming (OOP)
  • 001 Logic of Object Oriented Programming
  • 002 Constructor in Object Oriented Programming (OOP)
  • 003 Methods in Object Oriented Programming (OOP)
  • 004 Inheritance in Object Oriented Programming (OOP)
  • 005 Overriding and Overloading in Object Oriented Programming (OOP)

  • 06 - Fundamentals of Data Science
  • 001 What is Data Science
  • 002 Data Literacy
  • 003 Introduction to NumPy Library
  • 004 Notebook Project Files Link regarding NumPy Python Programming Language Library.html
  • 005 The Power of NumPy
  • 006 6 Article Advice And Links about Numpy, Numpy Pyhon.html
  • 007 Creating NumPy Array with The Array() Function
  • 008 Creating NumPy Array with Zeros() Function
  • 009 Creating NumPy Array with Ones() Function
  • 010 Creating NumPy Array with Full() Function
  • 011 Creating NumPy Array with Arange() Function
  • 012 Creating NumPy Array with Eye() Function
  • 013 Creating NumPy Array with Linspace() Function
  • 014 Creating NumPy Array with Random() Function
  • 015 Properties of NumPy Array
  • 016 Reshaping a NumPy Array Reshape() Function
  • 017 Identifying the Largest Element of a Numpy Array
  • 018 Detecting Least Element of Numpy Array Min(), Ar
  • 019 Concatenating Numpy Arrays Concatenate() Functio
  • 020 Splitting One-Dimensional Numpy Arrays The Split
  • 021 Splitting Two-Dimensional Numpy Arrays Split(),
  • 022 Sorting Numpy Arrays Sort() Function
  • 023 Indexing Numpy Arrays
  • 024 Slicing One-Dimensional Numpy Arrays
  • 025 Slicing Two-Dimensional Numpy Arrays
  • 026 Assigning Value to One-Dimensional Arrays
  • 027 Assigning Value to Two-Dimensional Array
  • 028 Fancy Indexing of One-Dimensional Arrrays
  • 029 Fancy Indexing of Two-Dimensional Arrrays
  • 030 Combining Fancy Index with Normal Indexing
  • 031 Combining Fancy Index with Normal Slicing
  • 032 Operations with Comparison Operators
  • 033 Arithmetic Operations in Numpy
  • 034 Statistical Operations in Numpy
  • 035 Solving Second-Degree Equations with NumPy
  • 036 Introduction to Pandas Library
  • 037 Pandas Project Files Link.html
  • 038 Creating a Pandas Series with a List
  • 039 Creating a Pandas Series with a Dictionary
  • 040 Creating Pandas Series with NumPy Array
  • 041 Object Types in Series
  • 042 Examining the Primary Features of the Pandas Series
  • 043 Most Applied Methods on Pandas Series
  • 044 Indexing and Slicing Pandas Series
  • 045 Creating Pandas DataFrame with List
  • 046 Creating Pandas DataFrame with NumPy Array
  • 047 Creating Pandas DataFrame with Dictionary
  • 048 Examining the Properties of Pandas DataFrames
  • 049 Element Selection Operations in Pandas DataFrames Lesson 1
  • 050 Element Selection Operations in Pandas DataFrames Lesson 2
  • 051 Top Level Element Selection in Pandas DataFramesLesson 1
  • 052 Top Level Element Selection in Pandas DataFramesLesson 2
  • 053 Top Level Element Selection in Pandas DataFramesLesson 3
  • 054 Element Selection with Conditional Operations in Pandas Data Frames
  • 055 Adding Columns to Pandas Data Frames
  • 056 Removing Rows and Columns from Pandas Data frames
  • 057 Null Values in pandas Dataframes
  • 058 Dropping Null Values Dropna() Function
  • 059 Filling Null Values Fillna() Function
  • 060 Setting Index in Pandas DataFrames
  • 061 Multi-Index and Index Hierarchy in Pandas DataFrames
  • 062 Element Selection in Multi-Indexed DataFrames
  • 063 Selecting Elements Using the xs() Function in Multi-Indexed DataFrames
  • 064 Concatenating Pandas Dataframes Concat Function
  • 065 Merge Pandas Dataframes Merge() Function Lesson 1
  • 066 Merge Pandas Dataframes Merge() Function Lesson 2
  • 067 Merge Pandas Dataframes Merge() Function Lesson 3
  • 068 Merge Pandas Dataframes Merge() Function Lesson 4
  • 069 Joining Pandas Dataframes Join() Function
  • 070 Loading a Dataset from the Seaborn Library
  • 071 Examining the Data Set 1
  • 072 Aggregation Functions in Pandas DataFrames
  • 073 Examining the Data Set 2
  • 074 Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes
  • 075 Advanced Aggregation Functions Aggregate() Function
  • 076 Advanced Aggregation Functions Filter() Function
  • 077 Advanced Aggregation Functions Transform() Function
  • 078 Advanced Aggregation Functions Apply() Function
  • 079 Examining the Data Set 3
  • 080 Pivot Tables in Pandas Library
  • 081 Accessing and Making Files Available
  • 082 Data Entry with Csv and Txt Files
  • 083 Data Entry with Excel Files
  • 084 Outputting as an CSV Extension
  • 085 Outputting as an Excel File

  • 07 - optional recap exercises and bouns info from the numpy library
  • 001 What is Numpy
  • 002 Why Numpy
  • 003 Array and features in Python Numpy
  • 004 Arrays Operators in Python Numpy
  • 005 Numpy Functions in Python Numpy
  • 006 Indexing and Slicing in Python Numpy
  • 007 Numpy Exercises in Python Numpy

  • 08 - Optional Recap Exercises and Bonus info from the Pandas Library
  • 001 What is Pandas
  • 002 Series and Features in Pandas
  • 003 Data Frame attributes and Methods in Pandas
  • 004 Groupby Operations in Pandas
  • 005 Combining DataFrames I in Pandas
  • 006 Combining DataFrames II in Pandas
  • 007 Work with CSV Files in Pandas

  • 09 - Matplotlib
  • 001 What is Matplotlib
  • 002 Using Pyplot
  • 003 Pyplot Pylab - Matplotlib
  • 004 Figure, Subplot and Axes
  • 005 Figure Customization
  • 006 Plot Customization
  • 007 Grid, Spines, Ticks
  • 008 Basic Plots in Matplotlib I
  • 008 age-data.csv
  • 008 scatter-ex.xlsx
  • 009 Basic Plots in Matplotlib II
  • 009 winequality.csv

  • 10 - Seaborn
  • 001 What is Seaborn
  • 002 Controlling Figure Aesthetics in Seaborn
  • 003 Example in Seaborn
  • 003 scores.csv
  • 004 Color Palettes in Seaborn
  • 004 flight-details.csv
  • 005 Basic Plots in Seaborn
  • 005 basic-details.csv
  • 005 movie-scores.csv
  • 005 salary.csv
  • 005 scores.csv
  • 005 youtube.csv
  • 006 Multi-Plots in Seaborn
  • 007 Regression Plots and Squarify in Seaborn
  • 007 age-data.csv
  • 007 water-usage.csv

  • 11 - Geoplotlib
  • 001 What is Geoplotlib
  • 002 Example - 1
  • 002 poaching-points-cleaned.csv
  • 003 Example - 2
  • 003 world-cities-pop.csv
  • 004 Example - 3

  • 12 - Extra
  • 001 Data Visualization with Python Masterclass Python A-Z.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 17062
    حجم: 5538 مگابایت
    مدت زمان: 1228 دقیقه
    تاریخ انتشار: ۸ مرداد ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید