وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science Methods and Algorithms [2024]

سرفصل های دوره

Learn Data Science Methods and Algorithms with Pandas and Python [2024]


1. Introduction to Data Science Methods and Algorithms
  • 1. Introduction
  • 2. Setup of the Anaconda Cloud Notebook
  • 3. Download and installation of the Anaconda Distribution (optional)
  • 4. The Conda Package Management System (optional)

  • 2. Master Python for Data Handling
  • 1. Overview of Python for Data Handling
  • 2. Python Integer
  • 3. Python Float
  • 4. Python Strings I
  • 5. Python Strings II Intermediate String Methods
  • 6. Python Strings III DateTime Objects and Strings
  • 7. Overview of Python Native Data Storage Structures
  • 8. Python Set
  • 9. Python Tuple
  • 10. Python Dictionary
  • 11. Python List
  • 12. Overview of Python Data Transformers and Functions
  • 13. Python While-loop
  • 14. Python For-loop
  • 15. Python Logic Operators and conditional code branching
  • 16. Python Functions I Some theory
  • 17. Python Functions II create your own functions
  • 18. Python Object Oriented Programming I Some theory
  • 19. Python Object Oriented Programming II create your own custom objects
  • 20. Python Object Oriented Programming III Files and Tables
  • 21.1 Text file.txt
  • 21. Python Object Oriented Programming IV Recap and More

  • 3. Master Pandas for Data Handling
  • 1. Master Pandas for Data Handling Overview
  • 2. Pandas theory and terminology
  • 3. Creating a Pandas DataFrame from scratch
  • 4. Pandas File Handling Overview
  • 5. Pandas File Handling The .csv file format
  • 6. Pandas File Handling The .xlsx file format
  • 7. Pandas File Handling SQL-database files and Pandas DataFrame
  • 8. Pandas Operations & Techniques Overview
  • 9. Pandas Operations & Techniques Object Inspection
  • 10. Pandas Operations & Techniques DataFrame Inspection
  • 11. Pandas Operations & Techniques Column Selections
  • 12. Pandas Operations & Techniques Row Selections
  • 13. Pandas Operations & Techniques Conditional Selections
  • 14. Pandas Operations & Techniques Scalers and Standardization
  • 15. Pandas Operations & Techniques Concatenate DataFrames
  • 16. Pandas Operations & Techniques Joining DataFrames
  • 17. Pandas Operations & Techniques Merging DataFrames
  • 18. Pandas Operations & Techniques Transpose & Pivot Functions
  • 19. Pandas Data Preparation I Overview & workflow
  • 20. Pandas Data Preparation II Edit DataFrame labels
  • 21. Pandas Data Preparation III Duplicates
  • 22. Pandas Data Preparation IV Missing Data & Imputation
  • 23.1 geyser.csv
  • 23.2 geyser.xlsx
  • 23. Pandas Data Preparation V Data Binnings [Extra Video]
  • 24.2 insurance data.csv
  • 24. Pandas Data Preparation VI Indicator Features [Extra Video]
  • 25. Pandas Data Description I Overview
  • 26. Pandas Data Description II Sorting and Ranking
  • 27. Pandas Data Description III Descriptive Statistics
  • 28. Pandas Data Description IV Crosstabulations & Groupings
  • 29. Pandas Data Visualization I Overview
  • 30. Pandas Data Visualization II Histograms
  • 31. Pandas Data Visualization III Boxplots
  • 32. Pandas Data Visualization IV Scatterplots
  • 33. Pandas Data Visualization V Pie Charts
  • 34. Pandas Data Visualization VI Line plots
  • Files.zip

  • 4. Regression, Prediction & Supervised Learning
  • 1. Regression, Prediction, and Supervised Learning. Section Overview (I)
  • 2. The Traditional Simple Regression Model (II)
  • 3. The Traditional Simple Regression Model (III)
  • 4. Some practical and useful modelling concepts (IV)
  • 5. Some practical and useful modelling concepts (V)
  • 6. Linear Multiple Regression model (VI)
  • 7. Linear Multiple Regression model (VII)
  • 8. Multivariate Polynomial Multiple Regression models (VIII)
  • 9. Multivariate Polynomial Multiple Regression models (VIIII)
  • 10. Regression Regularization, Lasso and Ridge models (X)
  • 11. Decision Tree Regression models (XI)
  • 12. Random Forest Regression (XII)
  • 13. Voting Regression (XIII)
  • Files.zip

  • 5. Classification & Supervised Learning
  • 1. Classification and Supervised Learning, overview
  • 2. Logistic Regression Classifier
  • 3. The Naive Bayes Classifier
  • 4. The Decision Tree Classifier
  • 5. The Random Forest Classifier
  • 6. The Voting Classifier
  • Files.zip

  • 6. Cluster Analysis and Unsupervised Learning
  • 1. Cluster Analysis, an overview
  • 2. K-Means Cluster Analysis, and an introduction to auto-updated K-means algorithms
  • 3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • 4. Four Hierarchical Clustering algorithms
  • Files.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 39367
    حجم: 15208 مگابایت
    مدت زمان: 2285 دقیقه
    تاریخ انتشار: 9 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید