وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science Methods and Algorithms [2024]

سرفصل های دوره

Learn Data Science Methods and Algorithms with Pandas and Python [2024]


1. Introduction to Data Science Methods and Algorithms
  • 1. Introduction
  • 2. Setup of the Anaconda Cloud Notebook
  • 3. Download and installation of the Anaconda Distribution (optional)
  • 4. The Conda Package Management System (optional)

  • 2. Master Python for Data Handling
  • 1. Overview of Python for Data Handling
  • 2. Python Integer
  • 3. Python Float
  • 4. Python Strings I
  • 5. Python Strings II Intermediate String Methods
  • 6. Python Strings III DateTime Objects and Strings
  • 7. Overview of Python Native Data Storage Structures
  • 8. Python Set
  • 9. Python Tuple
  • 10. Python Dictionary
  • 11. Python List
  • 12. Overview of Python Data Transformers and Functions
  • 13. Python While-loop
  • 14. Python For-loop
  • 15. Python Logic Operators and conditional code branching
  • 16. Python Functions I Some theory
  • 17. Python Functions II create your own functions
  • 18. Python Object Oriented Programming I Some theory
  • 19. Python Object Oriented Programming II create your own custom objects
  • 20. Python Object Oriented Programming III Files and Tables
  • 21.1 Text file.txt
  • 21. Python Object Oriented Programming IV Recap and More

  • 3. Master Pandas for Data Handling
  • 1. Master Pandas for Data Handling Overview
  • 2. Pandas theory and terminology
  • 3. Creating a Pandas DataFrame from scratch
  • 4. Pandas File Handling Overview
  • 5. Pandas File Handling The .csv file format
  • 6. Pandas File Handling The .xlsx file format
  • 7. Pandas File Handling SQL-database files and Pandas DataFrame
  • 8. Pandas Operations & Techniques Overview
  • 9. Pandas Operations & Techniques Object Inspection
  • 10. Pandas Operations & Techniques DataFrame Inspection
  • 11. Pandas Operations & Techniques Column Selections
  • 12. Pandas Operations & Techniques Row Selections
  • 13. Pandas Operations & Techniques Conditional Selections
  • 14. Pandas Operations & Techniques Scalers and Standardization
  • 15. Pandas Operations & Techniques Concatenate DataFrames
  • 16. Pandas Operations & Techniques Joining DataFrames
  • 17. Pandas Operations & Techniques Merging DataFrames
  • 18. Pandas Operations & Techniques Transpose & Pivot Functions
  • 19. Pandas Data Preparation I Overview & workflow
  • 20. Pandas Data Preparation II Edit DataFrame labels
  • 21. Pandas Data Preparation III Duplicates
  • 22. Pandas Data Preparation IV Missing Data & Imputation
  • 23.1 geyser.csv
  • 23.2 geyser.xlsx
  • 23. Pandas Data Preparation V Data Binnings [Extra Video]
  • 24.2 insurance data.csv
  • 24. Pandas Data Preparation VI Indicator Features [Extra Video]
  • 25. Pandas Data Description I Overview
  • 26. Pandas Data Description II Sorting and Ranking
  • 27. Pandas Data Description III Descriptive Statistics
  • 28. Pandas Data Description IV Crosstabulations & Groupings
  • 29. Pandas Data Visualization I Overview
  • 30. Pandas Data Visualization II Histograms
  • 31. Pandas Data Visualization III Boxplots
  • 32. Pandas Data Visualization IV Scatterplots
  • 33. Pandas Data Visualization V Pie Charts
  • 34. Pandas Data Visualization VI Line plots
  • Files.zip

  • 4. Regression, Prediction & Supervised Learning
  • 1. Regression, Prediction, and Supervised Learning. Section Overview (I)
  • 2. The Traditional Simple Regression Model (II)
  • 3. The Traditional Simple Regression Model (III)
  • 4. Some practical and useful modelling concepts (IV)
  • 5. Some practical and useful modelling concepts (V)
  • 6. Linear Multiple Regression model (VI)
  • 7. Linear Multiple Regression model (VII)
  • 8. Multivariate Polynomial Multiple Regression models (VIII)
  • 9. Multivariate Polynomial Multiple Regression models (VIIII)
  • 10. Regression Regularization, Lasso and Ridge models (X)
  • 11. Decision Tree Regression models (XI)
  • 12. Random Forest Regression (XII)
  • 13. Voting Regression (XIII)
  • Files.zip

  • 5. Classification & Supervised Learning
  • 1. Classification and Supervised Learning, overview
  • 2. Logistic Regression Classifier
  • 3. The Naive Bayes Classifier
  • 4. The Decision Tree Classifier
  • 5. The Random Forest Classifier
  • 6. The Voting Classifier
  • Files.zip

  • 6. Cluster Analysis and Unsupervised Learning
  • 1. Cluster Analysis, an overview
  • 2. K-Means Cluster Analysis, and an introduction to auto-updated K-means algorithms
  • 3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • 4. Four Hierarchical Clustering algorithms
  • Files.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 39367
    حجم: 15208 مگابایت
    مدت زمان: 2285 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید