وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science and Machine Learning Fundamentals [2024]

سرفصل های دوره

Learn to master Data Science and Machine Learning Fundamentals with Python and Pandas


1. Introduction
  • 1. Course introduction
  • 2. Setup of the Anaconda Cloud Notebook
  • 3. Download and installation of the Anaconda Distribution (optional)
  • 4. The Conda Package Management System (optional)

  • 2. Master Python for data handling
  • 1. Overview of the first part of this section
  • 2. Python Integers
  • 3. Python Floats
  • 4. Python Strings I
  • 5. Python Strings II Intermediate String Methods
  • 6. Python Strings III DateTime Objects and Strings
  • 7. Python Native Data Storage Overview
  • 8. Python Set
  • 9. Python Tuple
  • 10. Python Dictionary
  • 11. Python List
  • 12. Data Transformers and Functions
  • 13. The While Loop
  • 14. The For Loop
  • 15. Python Logic Operators
  • 16. Python Functions I
  • 17. Python Functions II
  • 18. Python Object Oriented Programming I Theory
  • 19. Python Object Oriented Programming II OOP
  • 20. Python Object Oriented Programming III Files and Tables
  • 21. Python Object Oriented Programming IV Recap and More
  • Files.zip

  • 3. Master Pandas for Data Handling
  • 1. Master Pandas for Data Handling Overview
  • 2. Pandas theory and terminology
  • 3. Creating a DataFrame from scratch
  • 4. Pandas File Handling Overview
  • 5. Pandas File Handling The .csv file format
  • 6. Pandas File Handling The .xlsx file format
  • 7. Pandas File Handling SQL-database files
  • 8. Pandas Operations & Techniques Overview
  • 9. Pandas Operations & Techniques Object Inspection
  • 10. Pandas Operations & Techniques DataFrame Inspection
  • 11. Pandas Operations & Techniques Column Selections
  • 12. Pandas Operations & Techniques Row Selections
  • 13. Pandas Operations & Techniques Conditional Selections
  • 14. Pandas Operations & Techniques Scalers and Standardization.
  • 15. Pandas Operations & Techniques Concatenate DataFrames
  • 16. Pandas Operations & Techniques Joining DataFrames
  • 17. Pandas Operations & Techniques Merging DataFrames
  • 18. Pandas Operations & Techniques Transpose & Pivot Functions
  • 19. Pandas Data Preparation I Overview & workflow
  • 20. Pandas Data Preparation II Edit DataFrame labels
  • 21. Pandas Data Preparation III Duplicates
  • 22. Pandas Data Preparation IV Missing Data & Imputation
  • 23. Pandas Data Preparation V Data Binnings [Extra Video]
  • 24. Pandas Data Preparation VI Indicator Features [Extra Video]
  • 25. Pandas Data Description I Overview
  • 26. Pandas Data Description II Sorting and Ranking
  • 27. Pandas Data Description III Descriptive Statistics
  • 28. Pandas Data Description IV Crosstabulations & Groupings
  • 29. Pandas Data Visualization I Overview
  • 30. Pandas Data Visualization II Histograms
  • 31. Pandas Data Visualization III Boxplots
  • 32. Pandas Data Visualization IV Scatterplots
  • 33. Pandas Data Visualization V Pie Charts
  • 34. Pandas Data Visualization VI Line plots
  • Files.zip

  • 4. Regression and Prediction with Machine Learning models
  • 1. Regression, Prediction, and Supervised Learning. Section Overview (I)
  • 2. The Traditional Simple Regression Model (II)
  • 3. The Traditional Simple Regression Model (III)
  • 4. Some practical and useful modelling concepts (IV)
  • 5. Some practical and useful modelling concepts (V)
  • 6. Linear Multiple Regression model (VI)
  • 7. Linear Multiple Regression model (VII)
  • 8. Multivariate Polynomial Multiple Regression models (VIII)
  • 9. Multivariate Polynomial Multiple Regression models (VIIII)
  • 10. Regression Regularization, Lasso and Ridge models (X)
  • 11. Decision Tree Regression models (XI)
  • 12. Random Forest Regression (XII)
  • 13. Voting Regression (XIII)
  • Files.zip

  • 5. Classification with Machine Learning models
  • 1. Classification and Supervised Learning, overview
  • 2. Logistic Regression Classifier
  • 3. The Naive Bayes Classifier
  • 4. The Decision Tree Classifier
  • 5. The Random Forest Classifier
  • 6. Linear Discriminant Analysis (LDA) [Extra Video]
  • 7. The Voting Classifier
  • Files.zip

  • 6. Cluster Analysis and Unsupervised Learning
  • 1. Cluster Analysis, an overview
  • 2. K-Means Cluster Analysis, and an introduction to auto-updated K-means algorithms
  • 3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • 4. Four Hierarchical Clustering algorithms
  • Files.zip

  • 7. Advanced Machine Learning models and tasks
  • 1. Overview
  • 2. Artificial Neural Networks, Feedforward Networks, and the Multi-Layer Perceptron
  • 3. Feedforward Multi-Layer Perceptrons for Classification tasks
  • 4. Feedforward Multi-Layer Perceptrons for Prediction tasks
  • Files.zip

  • 8. Text Mining and NLP
  • 1. Text Mining and NLP introduction
  • 2. Text Mining Setup
  • 3. Text Mining Tasks
  • 4. Text Mining Process
  • 5. Text Indexing Process
  • 6. The Tokenization Process
  • 7. Spelling correction and stop words
  • 8. Lemmatization and Stemming
  • 9. The Bag of Words Data Structure and some models
  • 10. The TF-IDF Data Structure and some models
  • 11. The N-grams Data Structure
  • 12. Attention-based models and Generative Pre-trained Transformer models
  • 13. Emotion Mining and Sentiment Analysis
  • Files.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 40928
    حجم: 20489 مگابایت
    مدت زمان: 2872 دقیقه
    تاریخ انتشار: 2 آبان 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید