وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science and Machine Learning Fundamentals [2024]

سرفصل های دوره

Learn to master Data Science and Machine Learning Fundamentals with Python and Pandas


1. Introduction
  • 1. Course introduction
  • 2. Setup of the Anaconda Cloud Notebook
  • 3. Download and installation of the Anaconda Distribution (optional)
  • 4. The Conda Package Management System (optional)

  • 2. Master Python for data handling
  • 1. Overview of the first part of this section
  • 2. Python Integers
  • 3. Python Floats
  • 4. Python Strings I
  • 5. Python Strings II Intermediate String Methods
  • 6. Python Strings III DateTime Objects and Strings
  • 7. Python Native Data Storage Overview
  • 8. Python Set
  • 9. Python Tuple
  • 10. Python Dictionary
  • 11. Python List
  • 12. Data Transformers and Functions
  • 13. The While Loop
  • 14. The For Loop
  • 15. Python Logic Operators
  • 16. Python Functions I
  • 17. Python Functions II
  • 18. Python Object Oriented Programming I Theory
  • 19. Python Object Oriented Programming II OOP
  • 20. Python Object Oriented Programming III Files and Tables
  • 21. Python Object Oriented Programming IV Recap and More
  • Files.zip

  • 3. Master Pandas for Data Handling
  • 1. Master Pandas for Data Handling Overview
  • 2. Pandas theory and terminology
  • 3. Creating a DataFrame from scratch
  • 4. Pandas File Handling Overview
  • 5. Pandas File Handling The .csv file format
  • 6. Pandas File Handling The .xlsx file format
  • 7. Pandas File Handling SQL-database files
  • 8. Pandas Operations & Techniques Overview
  • 9. Pandas Operations & Techniques Object Inspection
  • 10. Pandas Operations & Techniques DataFrame Inspection
  • 11. Pandas Operations & Techniques Column Selections
  • 12. Pandas Operations & Techniques Row Selections
  • 13. Pandas Operations & Techniques Conditional Selections
  • 14. Pandas Operations & Techniques Scalers and Standardization.
  • 15. Pandas Operations & Techniques Concatenate DataFrames
  • 16. Pandas Operations & Techniques Joining DataFrames
  • 17. Pandas Operations & Techniques Merging DataFrames
  • 18. Pandas Operations & Techniques Transpose & Pivot Functions
  • 19. Pandas Data Preparation I Overview & workflow
  • 20. Pandas Data Preparation II Edit DataFrame labels
  • 21. Pandas Data Preparation III Duplicates
  • 22. Pandas Data Preparation IV Missing Data & Imputation
  • 23. Pandas Data Preparation V Data Binnings [Extra Video]
  • 24. Pandas Data Preparation VI Indicator Features [Extra Video]
  • 25. Pandas Data Description I Overview
  • 26. Pandas Data Description II Sorting and Ranking
  • 27. Pandas Data Description III Descriptive Statistics
  • 28. Pandas Data Description IV Crosstabulations & Groupings
  • 29. Pandas Data Visualization I Overview
  • 30. Pandas Data Visualization II Histograms
  • 31. Pandas Data Visualization III Boxplots
  • 32. Pandas Data Visualization IV Scatterplots
  • 33. Pandas Data Visualization V Pie Charts
  • 34. Pandas Data Visualization VI Line plots
  • Files.zip

  • 4. Regression and Prediction with Machine Learning models
  • 1. Regression, Prediction, and Supervised Learning. Section Overview (I)
  • 2. The Traditional Simple Regression Model (II)
  • 3. The Traditional Simple Regression Model (III)
  • 4. Some practical and useful modelling concepts (IV)
  • 5. Some practical and useful modelling concepts (V)
  • 6. Linear Multiple Regression model (VI)
  • 7. Linear Multiple Regression model (VII)
  • 8. Multivariate Polynomial Multiple Regression models (VIII)
  • 9. Multivariate Polynomial Multiple Regression models (VIIII)
  • 10. Regression Regularization, Lasso and Ridge models (X)
  • 11. Decision Tree Regression models (XI)
  • 12. Random Forest Regression (XII)
  • 13. Voting Regression (XIII)
  • Files.zip

  • 5. Classification with Machine Learning models
  • 1. Classification and Supervised Learning, overview
  • 2. Logistic Regression Classifier
  • 3. The Naive Bayes Classifier
  • 4. The Decision Tree Classifier
  • 5. The Random Forest Classifier
  • 6. Linear Discriminant Analysis (LDA) [Extra Video]
  • 7. The Voting Classifier
  • Files.zip

  • 6. Cluster Analysis and Unsupervised Learning
  • 1. Cluster Analysis, an overview
  • 2. K-Means Cluster Analysis, and an introduction to auto-updated K-means algorithms
  • 3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • 4. Four Hierarchical Clustering algorithms
  • Files.zip

  • 7. Advanced Machine Learning models and tasks
  • 1. Overview
  • 2. Artificial Neural Networks, Feedforward Networks, and the Multi-Layer Perceptron
  • 3. Feedforward Multi-Layer Perceptrons for Classification tasks
  • 4. Feedforward Multi-Layer Perceptrons for Prediction tasks
  • Files.zip

  • 8. Text Mining and NLP
  • 1. Text Mining and NLP introduction
  • 2. Text Mining Setup
  • 3. Text Mining Tasks
  • 4. Text Mining Process
  • 5. Text Indexing Process
  • 6. The Tokenization Process
  • 7. Spelling correction and stop words
  • 8. Lemmatization and Stemming
  • 9. The Bag of Words Data Structure and some models
  • 10. The TF-IDF Data Structure and some models
  • 11. The N-grams Data Structure
  • 12. Attention-based models and Generative Pre-trained Transformer models
  • 13. Emotion Mining and Sentiment Analysis
  • Files.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 40928
    حجم: 20489 مگابایت
    مدت زمان: 2872 دقیقه
    تاریخ انتشار: ۲ آبان ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید