وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

ChatGPT for Deep Learning with Python Keras and Tensorflow

سرفصل های دوره

Master Image Recognition, Time Series Prediction, Regression and Classification with ChatGPT! A Project-based Course.


1. Introduction
  • 1. Welcome and Introduction
  • 2. Sneak Preview Deep Learning with ChatGPT
  • 3. How to get the most out of this course
  • 4. Course Overview
  • 5.1 Course Materials.zip
  • 5. Download Materials Downloads

  • 2. ChatGPT Introduction
  • 1. What is ChatGPT and how does it work
  • 2. ChatGPT vs. Search Engines
  • 3. Artificial Intelligence vs. Human Intelligence
  • 4. Creating a ChatGPT account and getting started
  • 5. Design Update November 2023
  • 6. Features, Options and Products around GPT models
  • 7. Navigating the OpenAI Website
  • 8. What is a Token and how do Tokens work
  • 9. Prompt Engineering Techniques (Part 1)
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Prompt Engineering Techniques (Part 2)
  • 12. Prompt(s) used in previous Lecture.html
  • 13. Prompt Engineering Techniques (Part 3)
  • 14. Prompt(s) used in previous Lecture.html

  • 3. Python Installation
  • 1. Download and Install Anaconda
  • 2. How to open Jupyter Notebooks
  • 3. How to work with Jupyter Notebooks
  • 4. How to create a customized Environment for Deep Learning

  • 4. Understanding Deep Learning and Neural Networks - with ChatGPT
  • 1. Deep Learning vs. traditional Machine Learning
  • 2. Prompt(s) used in previous Lecture.html
  • 3. Neural Network Types - Overview
  • 4. Prompt(s) used in previous Lecture.html
  • 5. The Feedforward Neural Network (FNN) explained
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Neural Network Types - CNN and RNN at a glance
  • 8. Prompt(s) used in previous Lecture.html
  • 9. Pre-trained GPT models vs. customized Neural Networks - What to use when
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Test your Deep Learning Neural Networks Knowledge.html

  • 5. Introduction Project Explore an unknown Dataset with ChatGPT and Pandas
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Providing the Dataset to GPT3.5
  • 4. Prompt(s) used in previous Lecture.html
  • 5. Task 1 Inspecting the Dataset with GPT3.5
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 2 Brainstorming with GPT3.5
  • 8. Prompt(s) used in the previous Lecture.html
  • 9. Task 3 Data Cleaning with GPT3.5
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Task 4 Identifying and Creating new Features with GPT3.5
  • 12. Prompt(s) used in previous Lecture.html
  • 13. Task 5 Saving the cleaned Dataset
  • 14. Prompt(s) used in previous Lecture.html
  • 15. Loading the Dataset with GPT4
  • 16. Prompt(s) used in previous Lecture.html
  • 17. Initial Data Inspection and Brainstorming with GPT4
  • 18. Prompt(s) used in previous Lecture.html
  • 19. Data Cleaning with GPT4
  • 20. Prompt(s) used in previous Lecture.html
  • 21. Troubleshooting
  • 22. Identifying and Creating new Features with GPT4
  • 23. Prompt(s) used in previous Lecture.html
  • 24. How to download and save the cleaned Dataset from GPT4
  • 25. Prompt(s) used in previous Lecture.html
  • 26. Conclusion, Final Remarks and Troubleshooting

  • 6. Using ChatGPT for Explanatory Data Analysis (EDA)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in the previous Lecture.html
  • 5. Excursus Behind the Scenes
  • 6. Task 2 Brainstorming Goals and Objectives of an EDA
  • 7. Prompt(s) used in the previous Lecture.html
  • 8. Task 3 Univariate Data Analysis
  • 9. Prompt(s) used in the previous Lecture.html
  • 10. Task 4 Multivariate Data Analysis Correlations
  • 11. Prompt(s) used in the previous Lecture.html
  • 12. Task 5 Exploring Factors influencing Income
  • 13. Prompt(s) used in the previous Lecture.html
  • 14. Task 6 Implications & Outlook
  • 15. Prompt(s) used in the previous Lecture.html
  • 16. The Code reviewed & Troubleshooting

  • 7. Using ChatGPT for Binary Classification with Feedforward Neural Networks (FNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in previous Lecture.html
  • 5. Task 2 Brainstorming How to best tackle a FNN Classification Project
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 3 Data Pre-processing and Feature Engineering (Theory)
  • 8. Prompt(s) used in previous Lecture.html
  • 9. Feature-specific questions and considerations
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Actions derived from Brainstorming
  • 12. Task 4 Data Pre-Processing and Feature Engineering (Code)
  • 13. Prompt(s) used in previous Lecture.html
  • 14. Task 5 Defining and Fitting an FNN Baseline Model
  • 15. Prompt(s) used in previous Lecture.html
  • 16. Task 6 Evaluation of Baseline Model on the Test Set
  • 17. Prompt(s) used in previous Lecture.html
  • 18. Task 7 Model Optimization - Theory
  • 19. Prompt(s) used in previous Lecture.html
  • 20. Task 7 Model Optimization - Code
  • 21. Prompt(s) used in the previous Lecture.html
  • 22. Performance Evaluation and Model Architecture
  • 23. Prompt(s) used in the previous Lecture.html
  • 24. Modifying the number of Hidden Layers
  • 25. Task 8 Decision Thresholds (Precision vs. Recall)
  • 26. Prompt(s) used in the previous Lecture.html
  • 27. The full project using GPT4 (Part 1)
  • 28. The full project using GPT4 (Part 2)
  • 29. Bonus Task Feature Importance and Outlook (Part 1)
  • 30. Prompt(s) used in the previous Lecture.html
  • 31. Bonus Task Feature Importance and Outlook (Part 2)
  • 32. Prompt(s) used in the previous Lecture.html

  • 8. Using ChatGPT for Image Recognition with Convolutional Neural Networks (CNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 Downloading the Dataset
  • 4. Task 2 Loading the Dataset with Python and first Data Inspection
  • 5. Prompt(s) used in the previous Lecture.html
  • 6. Task 3 Displaying the images with Python
  • 7. Prompt(s) used in the previous Lecture.html
  • 8. Task 4 Loading, Merging, formatting and storing the full dataset
  • 9. Prompt(s) used in the previous Lecture.html
  • 10. Task 5 Data Preprocessing
  • 11. Prompt(s) used in the previous Lecture.html
  • 12. Task 6 Brainstorming
  • 13. Prompt(s) used in the previous Lecture.html
  • 14. Task 7 Creating and Training a Baseline CNN model
  • 15. Prompt(s) used in the previous Lecture.html
  • 16. Task 8 Evaluating the Baseline Model
  • 17. Prompt(s) used in the previous Lecture.html
  • 18. Task 9 Data Augmentation & Model Checkpointing
  • 19. Prompt(s) used in the previous Lecture.html
  • 20. Model Checkpointing
  • 21. Advanced Data Augmentation & Fine Tuning
  • 22. Prompt(s) used in the previous Lecture.html
  • 23. Task 10 Increasing Model Architecture Complexity & Dropout
  • 24. Prompt(s) used in the previous Lecture.html
  • 25. Adding Dropout
  • 26. Prompt(s) used in the previous Lecture.html

  • 9. Using ChatGPT for Time Series Prediction with Recurrent Neural Networks (RNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in the previous Lecture.html
  • 5. Task 2 Explanatory Data Analysis (EDA)
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 3 Brainstorming How to best tackle an RNN Time Series Project
  • 8. Prompt(s) used in the previous Lecture.html
  • 9. Task 4 Covariance Stationarity and other Time Series specific aspects
  • 10. Prompt(s) used in the previous Lecture.html
  • 11. Task 5 Feature Creation - adding temporal features
  • 12. Prompt(s) used in the previous Lecture.html
  • 13. Task 6 Creating and fitting a Baseline Model
  • 14. Prompt(s) used in the previous Lecture.html
  • 15. Performance Evaluation on the Test Set
  • 16. Prompt(s) used in the previous Lecture.html
  • 17. Finding the optimal look-back period (Lags)
  • 18. Task 7 Adding more Features to the model (Part 1)
  • 19. Prompt(s) used in the previous Lecture.html
  • 20. Task 7 Adding more Features to the model (Part 2)
  • 21. Task 8 Adding Temporal Features to the model
  • 22. Prompt(s) used in the previous Lecture.html
  • 23. Task 9 Increase the complexity of the LSTM Architecture
  • 24. Prompt(s) used in the previous Lecture.html
  • 25. Task 10 Adding Early Stopping, Validation & more
  • 26. Final Assessment and potential Improvements
  • 27. Prompt(s) used in the previous Lecture.html

  • 10. Appendix Pandas Crash Course
  • 1. Introduction
  • 2. Intro to Tabular Data Pandas
  • 3. Create your very first Pandas DataFrame (from csv)
  • 4. Loading a CSV-file into Pandas.html
  • 5. How to read CSV-files from other Locations
  • 6. Pandas Display Options and the methods head() & tail()
  • 7. First Data Inspection
  • 8. Summary Statistics.html
  • 9. Built-in Functions, Attributes and Methods with Pandas
  • 10. Make it easy TAB Completion and Tooltip
  • 11. Selecting Columns
  • 12. Selecting one Column with the dot notation
  • 13. Selecting Columns.html
  • 14. Zero-based Indexing and Negative Indexing
  • 15. Selecting Rows with iloc (position-based indexing)
  • 16. Slicing Rows and Columns with iloc (position-based indexing)
  • 17.1 pandas iloc.pdf
  • 17. Position-based Indexing Cheat Sheets.html
  • 18. Position-based Indexing 1.html
  • 19. Position-based Indexing 2.html
  • 20. Selecting Rows with loc (label-based indexing)
  • 21. Slicing Rows and Columns with loc (label-based indexing)
  • 22.1 Pandas loc.pdf
  • 22. Label-based Indexing Cheat Sheets.html
  • 23. Label-based Indexing 1.html
  • 24. Label-based Indexing 2.html
  • 25. First Steps with Pandas Series
  • 26. Analyzing Numerical Series with unique(), nunique() and value counts()
  • 27. Analyzing non-numerical Series with unique(), nunique(), value counts()
  • 28. First Steps with Pandas Index Objects
  • 29. Filtering DataFrames by one Condition
  • 30. Filtering DataFrames by many Conditions
  • 31. Sorting DataFrames with sort index() and sort values()
  • 32. Visualizing Data with the plot() method
  • 33. Creating Histograms
  • 34. Creating Scatterplots
  • 35. Understanding GroupBy objects
  • 36. Splitting with many Keys
  • 37. split-apply-combine explained
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39347
    حجم: 7376 مگابایت
    مدت زمان: 853 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید