وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

AI in Trading: Signal Creation

سرفصل های دوره

Build AI Based Buy/Sell Signal/Indicator in Your Algorithmic Trading Bot, Boost Your Python Machine Learning Knowledge


1. Fundamental
  • 1. Introduction
  • 2. Trading Concepts
  • 3. Trading Process
  • 4. Machine Learning Basics
  • 5. Machine Learning in Trading

  • 2. Basic Python Packages
  • 1. Introduction
  • 2. Jupyter
  • 3. Jupyter Tour
  • 4. Pandas and Numpy
  • 5. Numpy Basics
  • 6. Pandas Basics
  • 7. Plotting
  • 8. Seaborn and MatPlotLib

  • 3. Data Sources
  • 1. Introduction
  • 2. Types of Data
  • 3. Methods to Access Data
  • 4. Alpha Vantage
  • 5. Alpha Vantage Access Data With Python
  • 6. AlphaVantage Big Range
  • 7. MetaTrader
  • 8. Metatrader Access Data With Python

  • 4. Feature and Target Design
  • 1.1 av AAPL.csv
  • 1. Introduction
  • 2. Feature and Target Extraction
  • 3. Data Usage Considerations
  • 4. PandasTa
  • 5. PandasTa Target Design
  • 6. PandasTa Feature Feature Design
  • 7. Visualizing Features and Targets
  • 8. Visualizing Features and Targets Continuation

  • 5. Probability Based Algorithms (Bayesian)
  • 1.1 features targets.csv
  • 1. Introduction
  • 2. Bayesian Mindset
  • 3. Bayesian Mathematics
  • 4. Bayesian Application in Spam Detection
  • 5. Bayesian For Parameter Estimation
  • 6. Bayesian For Parameter Estimation Cont.
  • 7. Pymc
  • 8. Pymc Basics
  • 9. Parameter Estimation using Pymc
  • 10. Classification vs Regression
  • 11. Conver Returns to Classification
  • 12. Bayesian Log Regression
  • 13. Bayesian Log Regression for Price Direction in Python
  • 14. Bayesian Log Regression for Price Direction in Python Cont.

  • 6. Decision Tree
  • 1.1 features targets.csv
  • 1. Introduction
  • 2. Decistion Tree Basics
  • 3. Decistion Tree Regression
  • 4. Decistion Tree to Estimate Returns
  • 5. Decistion Tree to Estimate Returns Cont.
  • 6. Decistion Tree to Estimate Returns Cont.
  • 7. Decistion Tree with All Features
  • 8. Split Train and Test
  • 9. Decision Tree for Classification
  • 10. Decision Tree for Classification All Features
  • 11. Cross Validation
  • 12. Cross Validation with Python
  • 13. Cross Validation with Python Cont.
  • 14. Tuning Decision Tree
  • 15. Train Size Selection
  • 16. Random Forest
  • 17. Random Forest with Python
  • 18. Random Forest Tuning

  • 7. Gradient Boosting
  • 1.1 features targets.csv
  • 1. Introduction
  • 2. Ensemble
  • 3. DT Boosting
  • 4. Boosting with Test data
  • 5. Boosting Cross Validation
  • 6. Boosting Cross Validation Cont.

  • 8. Deep Learning
  • 1.1 features targets.csv
  • 1. Introduction
  • 2. Deep Learning
  • 3. What is Gradient Descent
  • 4. Feed Forward Neural Network
  • 5. Feed Forward Neural Network Tensorflow
  • 6. Feed Forward Neural Network Hyperparameter Tuning
  • 7. Feed Forward Neural Network Hyperparameter Tuning Cont.

  • 9. Recurrent Neural Network
  • 1.1 features targets.csv
  • 1. Introduction
  • 2. Recurrent Neural Network and LSTM
  • 3. Data Preparation
  • 4. LSTM with Tensorflow
  • 5. LSTM Model Diagnosis
  • 6. LSTM Model Diagnosis Cont.
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18940
    حجم: 3497 مگابایت
    مدت زمان: 633 دقیقه
    تاریخ انتشار: 20 شهریور 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید