وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
2

ChatGPT for Deep Learning with Python Keras and Tensorflow

سرفصل های دوره

Master Image Recognition, Time Series Prediction, Regression and Classification with ChatGPT! A Project-based Course.


1. Introduction
  • 1. Welcome and Introduction
  • 2. Sneak Preview Deep Learning with ChatGPT
  • 3. How to get the most out of this course
  • 4. Course Overview
  • 5.1 Course Materials.zip
  • 5. Download Materials Downloads

  • 2. ChatGPT Introduction
  • 1. What is ChatGPT and how does it work
  • 2. ChatGPT vs. Search Engines
  • 3. Artificial Intelligence vs. Human Intelligence
  • 4. Creating a ChatGPT account and getting started
  • 5. Design Update November 2023
  • 6. Features, Options and Products around GPT models
  • 7. Navigating the OpenAI Website
  • 8. What is a Token and how do Tokens work
  • 9. Prompt Engineering Techniques (Part 1)
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Prompt Engineering Techniques (Part 2)
  • 12. Prompt(s) used in previous Lecture.html
  • 13. Prompt Engineering Techniques (Part 3)
  • 14. Prompt(s) used in previous Lecture.html

  • 3. Python Installation
  • 1. Download and Install Anaconda
  • 2. How to open Jupyter Notebooks
  • 3. How to work with Jupyter Notebooks
  • 4. How to create a customized Environment for Deep Learning

  • 4. Understanding Deep Learning and Neural Networks - with ChatGPT
  • 1. Deep Learning vs. traditional Machine Learning
  • 2. Prompt(s) used in previous Lecture.html
  • 3. Neural Network Types - Overview
  • 4. Prompt(s) used in previous Lecture.html
  • 5. The Feedforward Neural Network (FNN) explained
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Neural Network Types - CNN and RNN at a glance
  • 8. Prompt(s) used in previous Lecture.html
  • 9. Pre-trained GPT models vs. customized Neural Networks - What to use when
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Test your Deep Learning Neural Networks Knowledge.html

  • 5. Introduction Project Explore an unknown Dataset with ChatGPT and Pandas
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Providing the Dataset to GPT3.5
  • 4. Prompt(s) used in previous Lecture.html
  • 5. Task 1 Inspecting the Dataset with GPT3.5
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 2 Brainstorming with GPT3.5
  • 8. Prompt(s) used in the previous Lecture.html
  • 9. Task 3 Data Cleaning with GPT3.5
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Task 4 Identifying and Creating new Features with GPT3.5
  • 12. Prompt(s) used in previous Lecture.html
  • 13. Task 5 Saving the cleaned Dataset
  • 14. Prompt(s) used in previous Lecture.html
  • 15. Loading the Dataset with GPT4
  • 16. Prompt(s) used in previous Lecture.html
  • 17. Initial Data Inspection and Brainstorming with GPT4
  • 18. Prompt(s) used in previous Lecture.html
  • 19. Data Cleaning with GPT4
  • 20. Prompt(s) used in previous Lecture.html
  • 21. Troubleshooting
  • 22. Identifying and Creating new Features with GPT4
  • 23. Prompt(s) used in previous Lecture.html
  • 24. How to download and save the cleaned Dataset from GPT4
  • 25. Prompt(s) used in previous Lecture.html
  • 26. Conclusion, Final Remarks and Troubleshooting

  • 6. Using ChatGPT for Explanatory Data Analysis (EDA)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in the previous Lecture.html
  • 5. Excursus Behind the Scenes
  • 6. Task 2 Brainstorming Goals and Objectives of an EDA
  • 7. Prompt(s) used in the previous Lecture.html
  • 8. Task 3 Univariate Data Analysis
  • 9. Prompt(s) used in the previous Lecture.html
  • 10. Task 4 Multivariate Data Analysis Correlations
  • 11. Prompt(s) used in the previous Lecture.html
  • 12. Task 5 Exploring Factors influencing Income
  • 13. Prompt(s) used in the previous Lecture.html
  • 14. Task 6 Implications & Outlook
  • 15. Prompt(s) used in the previous Lecture.html
  • 16. The Code reviewed & Troubleshooting

  • 7. Using ChatGPT for Binary Classification with Feedforward Neural Networks (FNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in previous Lecture.html
  • 5. Task 2 Brainstorming How to best tackle a FNN Classification Project
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 3 Data Pre-processing and Feature Engineering (Theory)
  • 8. Prompt(s) used in previous Lecture.html
  • 9. Feature-specific questions and considerations
  • 10. Prompt(s) used in previous Lecture.html
  • 11. Actions derived from Brainstorming
  • 12. Task 4 Data Pre-Processing and Feature Engineering (Code)
  • 13. Prompt(s) used in previous Lecture.html
  • 14. Task 5 Defining and Fitting an FNN Baseline Model
  • 15. Prompt(s) used in previous Lecture.html
  • 16. Task 6 Evaluation of Baseline Model on the Test Set
  • 17. Prompt(s) used in previous Lecture.html
  • 18. Task 7 Model Optimization - Theory
  • 19. Prompt(s) used in previous Lecture.html
  • 20. Task 7 Model Optimization - Code
  • 21. Prompt(s) used in the previous Lecture.html
  • 22. Performance Evaluation and Model Architecture
  • 23. Prompt(s) used in the previous Lecture.html
  • 24. Modifying the number of Hidden Layers
  • 25. Task 8 Decision Thresholds (Precision vs. Recall)
  • 26. Prompt(s) used in the previous Lecture.html
  • 27. The full project using GPT4 (Part 1)
  • 28. The full project using GPT4 (Part 2)
  • 29. Bonus Task Feature Importance and Outlook (Part 1)
  • 30. Prompt(s) used in the previous Lecture.html
  • 31. Bonus Task Feature Importance and Outlook (Part 2)
  • 32. Prompt(s) used in the previous Lecture.html

  • 8. Using ChatGPT for Image Recognition with Convolutional Neural Networks (CNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 Downloading the Dataset
  • 4. Task 2 Loading the Dataset with Python and first Data Inspection
  • 5. Prompt(s) used in the previous Lecture.html
  • 6. Task 3 Displaying the images with Python
  • 7. Prompt(s) used in the previous Lecture.html
  • 8. Task 4 Loading, Merging, formatting and storing the full dataset
  • 9. Prompt(s) used in the previous Lecture.html
  • 10. Task 5 Data Preprocessing
  • 11. Prompt(s) used in the previous Lecture.html
  • 12. Task 6 Brainstorming
  • 13. Prompt(s) used in the previous Lecture.html
  • 14. Task 7 Creating and Training a Baseline CNN model
  • 15. Prompt(s) used in the previous Lecture.html
  • 16. Task 8 Evaluating the Baseline Model
  • 17. Prompt(s) used in the previous Lecture.html
  • 18. Task 9 Data Augmentation & Model Checkpointing
  • 19. Prompt(s) used in the previous Lecture.html
  • 20. Model Checkpointing
  • 21. Advanced Data Augmentation & Fine Tuning
  • 22. Prompt(s) used in the previous Lecture.html
  • 23. Task 10 Increasing Model Architecture Complexity & Dropout
  • 24. Prompt(s) used in the previous Lecture.html
  • 25. Adding Dropout
  • 26. Prompt(s) used in the previous Lecture.html

  • 9. Using ChatGPT for Time Series Prediction with Recurrent Neural Networks (RNN)
  • 1. Project Introduction
  • 2. Project Assignment
  • 3. Task 1 (Up-) Loading the Dataset and first Inspection
  • 4. Prompt(s) used in the previous Lecture.html
  • 5. Task 2 Explanatory Data Analysis (EDA)
  • 6. Prompt(s) used in previous Lecture.html
  • 7. Task 3 Brainstorming How to best tackle an RNN Time Series Project
  • 8. Prompt(s) used in the previous Lecture.html
  • 9. Task 4 Covariance Stationarity and other Time Series specific aspects
  • 10. Prompt(s) used in the previous Lecture.html
  • 11. Task 5 Feature Creation - adding temporal features
  • 12. Prompt(s) used in the previous Lecture.html
  • 13. Task 6 Creating and fitting a Baseline Model
  • 14. Prompt(s) used in the previous Lecture.html
  • 15. Performance Evaluation on the Test Set
  • 16. Prompt(s) used in the previous Lecture.html
  • 17. Finding the optimal look-back period (Lags)
  • 18. Task 7 Adding more Features to the model (Part 1)
  • 19. Prompt(s) used in the previous Lecture.html
  • 20. Task 7 Adding more Features to the model (Part 2)
  • 21. Task 8 Adding Temporal Features to the model
  • 22. Prompt(s) used in the previous Lecture.html
  • 23. Task 9 Increase the complexity of the LSTM Architecture
  • 24. Prompt(s) used in the previous Lecture.html
  • 25. Task 10 Adding Early Stopping, Validation & more
  • 26. Final Assessment and potential Improvements
  • 27. Prompt(s) used in the previous Lecture.html

  • 10. Appendix Pandas Crash Course
  • 1. Introduction
  • 2. Intro to Tabular Data Pandas
  • 3. Create your very first Pandas DataFrame (from csv)
  • 4. Loading a CSV-file into Pandas.html
  • 5. How to read CSV-files from other Locations
  • 6. Pandas Display Options and the methods head() & tail()
  • 7. First Data Inspection
  • 8. Summary Statistics.html
  • 9. Built-in Functions, Attributes and Methods with Pandas
  • 10. Make it easy TAB Completion and Tooltip
  • 11. Selecting Columns
  • 12. Selecting one Column with the dot notation
  • 13. Selecting Columns.html
  • 14. Zero-based Indexing and Negative Indexing
  • 15. Selecting Rows with iloc (position-based indexing)
  • 16. Slicing Rows and Columns with iloc (position-based indexing)
  • 17.1 pandas iloc.pdf
  • 17. Position-based Indexing Cheat Sheets.html
  • 18. Position-based Indexing 1.html
  • 19. Position-based Indexing 2.html
  • 20. Selecting Rows with loc (label-based indexing)
  • 21. Slicing Rows and Columns with loc (label-based indexing)
  • 22.1 Pandas loc.pdf
  • 22. Label-based Indexing Cheat Sheets.html
  • 23. Label-based Indexing 1.html
  • 24. Label-based Indexing 2.html
  • 25. First Steps with Pandas Series
  • 26. Analyzing Numerical Series with unique(), nunique() and value counts()
  • 27. Analyzing non-numerical Series with unique(), nunique(), value counts()
  • 28. First Steps with Pandas Index Objects
  • 29. Filtering DataFrames by one Condition
  • 30. Filtering DataFrames by many Conditions
  • 31. Sorting DataFrames with sort index() and sort values()
  • 32. Visualizing Data with the plot() method
  • 33. Creating Histograms
  • 34. Creating Scatterplots
  • 35. Understanding GroupBy objects
  • 36. Splitting with many Keys
  • 37. split-apply-combine explained
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39347
    حجم: 7376 مگابایت
    مدت زمان: 853 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید