1. What is Machine Learning.html
 2.1 Importing+Libaries+and+modules.txt
 2. Installing and importing libraries
 3. Data Preprocessing.html
 4. What is a Dataset.html
 5. Downloading dataset
 6. Exploring the Dataset
 7.1 handling+missing+values.txt
 7. Handle missing values and drop unnecessary columns.
 8.1 Encode+categorical+variables..txt
 8. Encode categorical variables.
 9. What is Feature Engineering.html
 10.1 Create+new+features..txt
 10. Create new features.
 11.1 Dropping+unnecessary+columns.txt
 11. Dropping unnecessary columns
 12.1 bar+plot+code.txt
 12. Visualize survival rate by gender
 13.1 bar+plot+2.txt
 13. Visualize survival rate by class
 14.1 visualize+numeric+data.txt
 14. Visualize numerical features
 15.1 Visualize++the+distribution+of+Age.txt
 15. Visualize the distribution of Age
 16.1 Visualize+number+of+passengers+in+each+passenger+class.txt
 16. Visualize number of passengers in each passenger class
 17.1 countplot.txt
 17. Visualize number of passengers that survived
 18.1 heatmap.txt
 18. Visualize the correlation matrix of numerical variables
 19.1 Visualize++the+distribution+of++Fare..txt
 19. Visualize the distribution of Fare.
 20. Data Preparation and Training Model.html
 21. What is a Model.html
 22.1 define+features.txt
 22. Define features and target variable.
 23.1 Split+data.txt
 23. Split data into training and testing set
 24.1 Standardize+features.txt
 24. Standardize features
 25. What is a logistic regression model..html
 26.1 regression+model.txt
 26. Train logistic regression model.
 27. Making Predictions
 28. What is accuracy in machine learning.html
 29. What is confusion matrix..html
 30. What is is classification report..html
 31. What is a Heatmap.html
 32.1 evaluate.txt
 32. Evaluate the model using accuracy, confusion matrix, and classification report.
 33.1 confusion+matrix.txt
 33. Visualize the confusion matrix.
 34.1 save+model.txt
 34. Saving the Model
 35.1 load+model.txt
 35. Loading the model
 36. Improving Understanding of the models prediction
 37.1 DECISION+TREES.txt
 37. Building a decision tree
 38.1 RANDOM+FOREST.txt
 38. Building a random forest