وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

NLP-Natural Language Processing in Python(Theory & Projects)

سرفصل های دوره

Mastering Natural Language Processing with Spacy, NLTK, PyTorch, NLP Techniques, Text Data Analysis, Hands-on Projects


1 - Introduction
  • 1 - Introduction to Course
  • 2 - Introduction to Instructor
  • 3 - Introduction to CoInstructor
  • 4 - Course Introduction
  • 5 - Request for Your Honest Review
  • 6 - Links for the Courses Materials and Codes.html

  • 2 - IntroductionRegular Expressions
  • 7 - Links for the Courses Materials and Codes.html
  • 8 - What Is Regular Expression
  • 9 - Why Regular Expression
  • 10 - ELIZA Chatbot
  • 11 - Python Regular Expression Package

  • 3 - Meta CharactersRegular Expressions
  • 12 - Links for the Courses Materials and Codes.html
  • 13 - Meta Characters
  • 14 - Meta Characters Bigbrackets Exercise
  • 15 - Meta Characters Bigbrackets Exercise Solution
  • 16 - Meta Characters Bigbrackets Exercise 2
  • 17 - Meta Characters Bigbrackets Exercise 2 Solution
  • 18 - Meta Characters Cap
  • 19 - Meta Characters Cap Exercise 3
  • 20 - Meta Characters Cap Exercise 3 Solution
  • 21 - Backslash
  • 22 - Backslash Continued
  • 23 - Backslash Continued 01
  • 24 - Backslash Squared Brackets Exercise
  • 25 - Backslash Squared Brackets Exercise Solution
  • 26 - Backslash Squared Brackets Exercise Another Solution
  • 27 - Backslash Exercise
  • 28 - Backslash Exercise Solution And Special Sequences Exercise
  • 29 - Solution And Special Sequences Exercise Solution
  • 30 - Meta Character Asterisk
  • 31 - Meta Character Asterisk Exercise
  • 32 - Meta Character Asterisk Exercise Solution
  • 33 - Meta Character Asterisk Homework
  • 34 - Meta Character Asterisk Greedymatching
  • 35 - Meta Character Plus And Questionmark
  • 36 - Meta Character Curly Brackets Exercise
  • 37 - Meta Character Curly Brackets Exercise Solution

  • 4 - Pattern ObjectsRegular Expressions
  • 38 - Links for the Courses Materials and Codes.html
  • 39 - Pattern Objects
  • 40 - Pattern Objects Match Method Exersize
  • 41 - Pattern Objects Match Method Exersize Solution
  • 42 - Pattern Objects Match Method Vs Search Method
  • 43 - Pattern Objects Finditer Method
  • 44 - Pattern Objects Finditer Method Exersize Solution

  • 5 - More Meta CharactersRegular Expressions
  • 45 - Links for the Courses Materials and Codes.html
  • 46 - Meta Characters Logical Or
  • 47 - Meta Characters Beginning And End Patterns
  • 48 - Meta Characters Paranthesis

  • 6 - String ModificationRegular Expressions
  • 49 - Links for the Courses Materials and Codes.html
  • 50 - String Modification
  • 51 - Word Tokenizer Using Split Method
  • 52 - Sub Method Exercise
  • 53 - Sub Method Exercise Solution

  • 7 - Words and TokensText Preprocessing
  • 54 - Links for the Courses Materials and Codes.html
  • 55 - What Is A Word
  • 56 - Definition Of Word Is Task Dependent
  • 57 - Vocabulary And Corpus
  • 58 - Tokens
  • 59 - Tokenization In Spacy

  • 8 - Sentiment ClassificationText Preprocessing
  • 60 - Links for the Courses Materials and Codes.html
  • 61 - Yelp Reviews Classification Mini Project Introduction
  • 62 - Yelp Reviews Classification Mini Project Vocabulary Initialization
  • 63 - Yelp Reviews Classification Mini Project Adding Tokens To Vocabulary
  • 64 - Yelp Reviews Classification Mini Project Look Up Functions In Vocabulary
  • 65 - Yelp Reviews Classification Mini Project Building Vocabulary From Data
  • 66 - Yelp Reviews Classification Mini Project One Hot Encoding
  • 67 - Yelp Reviews Classification Mini Project One Hot Encoding Implementation
  • 68 - Yelp Reviews Classification Mini Project Encoding Documents
  • 69 - Yelp Reviews Classification Mini Project Encoding Documents Implementation
  • 70 - Yelp Reviews Classification Mini Project Train Test Splits
  • 71 - Yelp Reviews Classification Mini Project Featurecomputation
  • 72 - Yelp Reviews Classification Mini Project Classification

  • 9 - Language Independent TokenizationText Preprocessing
  • 73 - Links for the Courses Materials and Codes.html
  • 74 - Tokenization In Detial Introduction
  • 75 - Tokenization Is Hard
  • 76 - Tokenization Byte Pair Encoding
  • 77 - Tokenization Byte Pair Encoding Example
  • 78 - Tokenization Byte Pair Encoding On Test Data
  • 79 - Tokenization Byte Pair Encoding Implementation Getpaircounts
  • 80 - Tokenization Byte Pair Encoding Implementation Mergeincorpus
  • 81 - Tokenization Byte Pair Encoding Implementation BFE Training
  • 82 - Tokenization Byte Pair Encoding Implementation BFE Encoding
  • 83 - Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair
  • 84 - Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair 1

  • 10 - Text NomalizationText Preprocessing
  • 85 - Links for the Courses Materials and Codes.html
  • 86 - Word Normalization Case Folding
  • 87 - Word Normalization Lematization
  • 88 - Word Normalization Stemming
  • 89 - Word Normalization Sentence Segmentation

  • 11 - String Matching and Spelling CorrectionText Preprocessing
  • 90 - Links for the Courses Materials and Codes.html
  • 91 - Spelling Correction Minimum Edit Distance Intro
  • 92 - Spelling Correction Minimum Edit Distance Example
  • 93 - Spelling Correction Minimum Edit Distance Table Filling
  • 94 - Spelling Correction Minimum Edit Distance Dynamic Programming
  • 95 - Spelling Correction Minimum Edit Distance Psudocode
  • 96 - Spelling Correction Minimum Edit Distance Implementation
  • 97 - Spelling Correction Minimum Edit Distance Implementation Bugfixing
  • 98 - Spelling Correction Implementation

  • 12 - Language Modeling
  • 99 - Links for the Courses Materials and Codes.html
  • 100 - What Is A Language Model
  • 101 - Language Model Formal Definition
  • 102 - Language Model Curse Of Dimensionality
  • 103 - Language Model Markov Assumption And NGrams
  • 104 - Language Model Implementation Setup
  • 105 - Language Model Implementation Ngrams Function
  • 106 - Language Model Implementation Update Counts Function
  • 107 - Language Model Implementation Probability Model Funciton
  • 108 - Language Model Implementation Reading Corpus
  • 109 - Language Model Implementation Sampling Text

  • 13 - Topic Modelling with Word and Document Representations
  • 110 - Links for the Courses Materials and Codes.html
  • 111 - One Hot Vectors
  • 112 - One Hot Vectors Implementaton
  • 113 - One Hot Vectors Limitations
  • 114 - One Hot Vectors Uses As Target Labeling
  • 115 - Term Frequency For Document Representations
  • 116 - Term Frequency For Document Representations Implementations
  • 117 - Term Frequency For Word Representations
  • 118 - TFIDF For Document Representations
  • 119 - TFIDF For Document Representations Implementation Reading Corpus
  • 120 - TFIDF For Document Representations Implementation Computing Document Frequenc
  • 121 - TFIDF For Document Representations Implementation Computing TFIDF
  • 122 - Topic Modeling With TFIDF 1
  • 123 - Topic Modeling With TFIDF 3
  • 124 - Topic Modeling With TFIDF 4
  • 125 - Topic Modeling With TFIDF 5
  • 126 - Topic Modeling With Gensim

  • 14 - Word Embeddings LSI
  • 127 - Links for the Courses Materials and Codes.html
  • 128 - Word Cooccurrence Matrix
  • 129 - Word Cooccurrence Matrix vs Documentterm Matrix
  • 130 - Word Cooccurrence Matrix Implementation Preparing Data
  • 131 - Word Cooccurrence Matrix Implementation Preparing Data 2
  • 132 - Word Cooccurrence Matrix Implementation Preparing Data Getting Vocabulary
  • 133 - Word Cooccurrence Matrix Implementation Final Function
  • 134 - Word Cooccurrence Matrix Implementation Handling Memory Issues On Large Corp
  • 135 - Word Cooccurrence Matrix Sparsity
  • 136 - Word Cooccurrence Matrix Positive Point Wise Mutual Information PPMI
  • 137 - PCA For Dense Embeddings
  • 138 - Latent Semantic Analysis
  • 139 - Latent Semantic Analysis Implementation

  • 15 - Word Semantics
  • 140 - Links for the Courses Materials and Codes.html
  • 141 - Cosine Similarity
  • 142 - Cosine Similarity Geting Norms Of Vectors
  • 143 - Cosine Similarity Normalizing Vectors
  • 144 - Cosine Similarity With More Than One Vectors
  • 145 - Cosine Similarity Getting Most Similar Words In The Vocabulary
  • 146 - Cosine Similarity Getting Most Similar Words In The Vocabulary Fixingbug Of D
  • 147 - Cosine Similarity Word2Vec Embeddings
  • 148 - Words Analogies
  • 149 - Words Analogies Implemenation 1
  • 150 - Words Analogies Implemenation 2
  • 151 - Words Visualizations
  • 152 - Words Visualizations Implementaion
  • 153 - Words Visualizations Implementaion 2

  • 16 - Word2vecOptional
  • 154 - Links for the Courses Materials and Codes.html
  • 155 - Static And Dynamic Embeddings
  • 156 - Self Supervision
  • 157 - Word2Vec Algorithm Abstract
  • 158 - Word2Vec Why Negative Sampling
  • 159 - Word2Vec What Is Skip Gram
  • 160 - Word2Vec How To Define Probability Law
  • 161 - Word2Vec Sigmoid
  • 162 - Word2Vec Formalizing Loss Function
  • 163 - Word2Vec Loss Function
  • 164 - Word2Vec Gradient Descent Step
  • 165 - Word2Vec Implemenation Preparing Data
  • 166 - Word2Vec Implemenation Gradient Step
  • 167 - Word2Vec Implemenation Driver Function

  • 17 - Need of Deep Learning for NLPNLP with Deep Learning DNN
  • 168 - Links for the Courses Materials and Codes.html
  • 169 - Why RNNs For NLP
  • 170 - Pytorch Installation And Tensors Introduction
  • 171 - Automatic Diffrenciation Pytorch

  • 18 - IntroductionNLP with Deep Learning DNN
  • 172 - Links for the Courses Materials and Codes.html
  • 173 - Why DNNs In Machine Learning
  • 174 - Representational Power And Data Utilization Capacity Of DNN
  • 175 - Perceptron
  • 176 - Perceptron Implementation
  • 177 - DNN Architecture
  • 178 - DNN Forwardstep Implementation
  • 179 - DNN Why Activation Function Is Required
  • 180 - DNN Properties Of Activation Function
  • 181 - DNN Activation Functions In Pytorch
  • 182 - DNN What Is Loss Function
  • 183 - DNN Loss Function In Pytorch

  • 19 - TrainingNLP with Deep Learning DNN
  • 184 - Links for the Courses Materials and Codes.html
  • 185 - DNN Gradient Descent
  • 186 - DNN Gradient Descent Implementation
  • 187 - DNN Gradient Descent Stochastic Batch Minibatch
  • 188 - DNN Gradient Descent Summary
  • 189 - DNN Implemenation Gradient Step
  • 190 - DNN Implemenation Stochastic Gradient Descent
  • 191 - DNN Implemenation Batch Gradient Descent
  • 192 - DNN Implemenation Minibatch Gradient Descent
  • 193 - DNN Implemenation In Pytorch

  • 20 - Hyper parametersNLP with Deep Learning DNN
  • 194 - Links for the Courses Materials and Codes.html
  • 195 - DNN Weights Initializations
  • 196 - DNN Learning Rate
  • 197 - DNN Batch Normalization
  • 198 - DNN Batch Normalization Implementation
  • 199 - DNN Optimizations
  • 200 - DNN Dropout
  • 201 - DNN Dropout In Pytorch
  • 202 - DNN Early Stopping
  • 203 - DNN Hyperparameters
  • 204 - DNN Pytorch CIFAR10 Example

  • 21 - IntroductionNLP with Deep Learning RNN
  • 205 - Links for the Courses Materials and Codes.html
  • 206 - What Is RNN
  • 207 - Understanding RNN With A Simple Example
  • 208 - RNN Applications Human Activity Recognition
  • 209 - RNN Applications Image Captioning
  • 210 - RNN Applications Machine Translation
  • 211 - RNN Applications Speech Recognition Stock Price Prediction
  • 212 - RNN Models

  • 22 - Miniproject Language ModellingNLP with Deep Learning RNN
  • 213 - Links for the Courses Materials and Codes.html
  • 214 - Language Modeling Next Word Prediction
  • 215 - Language Modeling Next Word Prediction Vocabulary Index
  • 216 - Language Modeling Next Word Prediction Vocabulary Index Embeddings
  • 217 - Language Modeling Next Word Prediction Rnn Architecture
  • 218 - Language Modeling Next Word Prediction Python 1
  • 219 - Language Modeling Next Word Prediction Python 2
  • 220 - Language Modeling Next Word Prediction Python 3
  • 221 - Language Modeling Next Word Prediction Python 4
  • 222 - Language Modeling Next Word Prediction Python 5
  • 223 - Language Modeling Next Word Prediction Python 6

  • 23 - Miniproject Sentiment ClassificationNLP with Deep Learning RNN
  • 224 - Links for the Courses Materials and Codes.html
  • 225 - Vocabulary Implementation
  • 226 - Vocabulary Implementation Helpers
  • 227 - Vocabulary Implementation From File
  • 228 - Vectorizer
  • 229 - RNN Setup
  • 230 - RNN Setup 1

  • 24 - RNN in PyTorchNLP with Deep Learning RNN
  • 231 - Links for the Courses Materials and Codes.html
  • 232 - RNN In Pytorch Introduction
  • 233 - RNN In Pytorch Embedding Layer
  • 234 - RNN In Pytorch Nn Rnn
  • 235 - RNN In Pytorch Output Shapes
  • 236 - RNN In Pytorch Gatedunits
  • 237 - RNN In Pytorch Gatedunits GRU LSTM
  • 238 - RNN In Pytorch Bidirectional RNN
  • 239 - RNN In Pytorch Bidirectional RNN Output Shapes
  • 240 - RNN In Pytorch Bidirectional RNN Output Shapes Seperation
  • 241 - RNN In Pytorch Example

  • 25 - Advanced RNN modelsNLP with Deep Learning RNN
  • 242 - Links for the Courses Materials and Codes.html
  • 243 - RNN Encoder Decoder
  • 244 - RNN Attention

  • 26 - Neural Machine Translation
  • 245 - Links for the Courses Materials and Codes.html
  • 246 - Introduction To Dataset And Packages
  • 247 - Implementing Language Class
  • 248 - Testing Language Class And Implementing Normalization
  • 249 - Reading Datafile
  • 250 - Reading Building Vocabulary
  • 251 - EncoderRNN
  • 252 - DecoderRNN
  • 253 - DecoderRNN Forward Step
  • 254 - DecoderRNN Helper Functions
  • 255 - Training Module
  • 256 - Stochastic Gradient Descent
  • 257 - NMT Training
  • 258 - NMT Evaluation
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 37819
    حجم: 11389 مگابایت
    مدت زمان: 1412 دقیقه
    تاریخ انتشار: ۲۱ خرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید