وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Google Cloud Certified Professional Machine Learning Engineer

سرفصل های دوره

This course will teach you everything you need to know to pass the Google Cloud Certified Professional Machine Learning Engineer exam. You will also gain the skills to develop practical Machine Learning solutions on Google Cloud.


01 Introduction
  • 001 Course Introduction
  • 001 Study Guide.pdf
  • 002 Machine Learning Scenario
  • 003 What Is Machine Learning
  • 004 Understanding GCPs Machine Learning Products
  • 005 Googles Responsible AI Practices

  • 02 Framing Machine Learning Problems
  • 001 Introduction
  • 002 Translating Business Challenges into Machine Learning Use Cases
  • 003 Exploring GCPs Prepackaged Machine Learning Solutions
  • 006 Defining Machine Learning Problems
  • 007 Defining Business Success Criteria
  • 008 Tracking and Running Machine Learning Experiments
  • 009 Identifying Risks to the Feasibility of Machine Learning Solutions
  • 010 Summary
  • 011 Exam Tips

  • 03 Architecting Low-Code Machine Learning Solutions
  • 001 Introduction
  • 002 Matching Machine Learning Services to Their Use Cases
  • 004 Understanding Machine Learning Component Types
  • 005 Demo Removing Sensitive Data with Cloud Data Loss Prevention
  • 006 Exploring and Analyzing Data
  • 008 Automating Orchestrating Serving and Monitoring Machine Learning Projects
  • 009 Choosing Google Cloud Hardware Components
  • 010 Demo Using GPU and TPU Hardware to Accelerate Machine Learning Pipelines
  • 011 Designing Architecture in Compliance with Security Concerns
  • 011 De-identifying sensitive data.txt
  • 012 Summary
  • 013 Exam Tips

  • 04 Collaborating Within and Across Teams to Manage Data and Models
  • 001 Introduction
  • 002 Understanding Data Preparation and Processing
  • 003 Exploring Data with Exploratory Data Analysis (EDA)
  • 004 Demo Prototyping Machine Learning Models with Vertex AI Workbench
  • 005 Building Artificial Intelligence Solutions with Machine Learning APIs
  • 006 Demo Using Document AI to Process Documents at Scale
  • 007 Collaborative Model Prototyping Using Jupyter Notebooks
  • 008 Building Data Pipelines
  • 010 Feature Engineering
  • 011 Demo Creating and Consolidating Features with Vertex AI Feature Store
  • 012 Summary
  • 013 Exam Tips

  • 05 Prototyping and Developing Machine Learning Models
  • 001 Introduction
  • 002 Overview of Building Models
  • 003 Training Models
  • 004 Demo Creating and Serving a Machine Learning Model Using Vertex AI and AutoML
  • 005 Testing Models
  • 006 Demo Building a Machine Learning Model with BigQuery ML
  • 008 Demo Creating a Distributed Vertex AI Job
  • 009 Scaling Model Training and Serving
  • 010 Demo Tuning Hyperparameters
  • 011 Summary
  • 012 Exam Tips

  • 06 Scaling and Serving Models
  • 001 Introduction
  • 002 Designing and Implementing Training Pipelines
  • 003 Implementing Serving Pipelines
  • 005 Tracking and Auditing Metadata
  • 006 Demo Automating Model Training
  • 007 Summary
  • 008 Exam Tips

  • 07 Monitoring Optimizing and Maintaining Machine Learning Solutions
  • 001 Introduction
  • 002 Monitoring and Troubleshooting Machine Learning Solutions
  • 003 Tuning the Performance of Machine Learning Solutions for Training and Serving in Production
  • 004 Summary
  • 005 Exam Tips

  • 08 Practice Exam
  • 001 Preparing for the Exam

  • 09 Conclusion
  • 001 Course Summary
  • 002 Conclusion and Whats Next
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 29717
    حجم: 4253 مگابایت
    مدت زمان: 451 دقیقه
    تاریخ انتشار: 2 اسفند 1402
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید