جمع جزء: 417,000 تومان
- × 1 عدد: آموزش مبانی جانگو - یادگیری کامل Django - 139,000 تومان
- × 1 عدد: کورس یادگیری VMware NSX-T 3.0 : کار با Node های مدیریت و انتقال - 139,000 تومان
- × 1 عدد: Create an Options Menu - 139,000 تومان
در این دوره آموزشی با مهندسی قابلیت ها یا همان Feature Engineering آشنا شده و یاد می گیرید که چطور آن را در پروژه های Machine Learning استفاده کنید.
عنوان اصلی : Feature Engineering
معرفی
داده های خام به ویژگی ها
ویژگی های خوب در مقابل بد
امتحان: ویژگی ها با هدف مرتبط هستند
امتحان: ویژگی ها در زمان پیش بینی قابل تشخیص هستند
ویژگی ها در زمان پیش بینی قابل تشخیص هستند
ویژگی ها باید عددی باشند
آزمون: ویژگی ها باید عددی باشند
ویژگی ها باید نمونه های کافی داشته باشند
امتحان: ویژگی ها باید به اندازه کافی مثال داشته باشند (قسمت 1)
امتحان: ویژگی ها باید نمونه های کافی داشته باشند (قسمت 2)
آوردن بینش های انسانی
نمایش ویژگی ها
ML در مقابل آمار
[ML on GCP C4] بهبود دقت مدل با ویژگیهای جدید
بهبود دقت مدل با ویژگی های جدید
پیش پردازش و ایجاد ویژگی
Apache Beam / Cloud Dataflow
یک خط لوله جریان داده ساده
[ML on GCP C4] یک خط لوله ساده جریان داده (Python)
راه حل آزمایشگاهی: یک خط لوله ساده جریان داده
خطوط لوله داده در مقیاس
MapReduce در Dataflow
[ML در GCP C4] MapReduce در Dataflow (Python)
راه حل آزمایشگاهی: MapReduce در جریان داده
جمع بندی جریان داده
پیش پردازش با Cloud Dataprep
معرفی آزمایشگاه: محاسبات ویژگی های پنجره زمانی در Cloud Dataprep
[ML در GCP C4] محاسبات ویژگی های پنجره زمانی در Cloud Dataprep
راه حل آزمایشگاهی: محاسبه ویژگی های پنجره زمانی در Cloud Dataprep
معرفی
متقاطع ویژگی چیست؟
گسسته سازی
حفظ در مقابل تعمیم
رنگ های تاکسی
Lab Intro: ویژگی های متقاطع برای ایجاد یک طبقه بندی خوب
راه حل آزمایشگاهی: ویژگی های متقاطع برای ایجاد یک طبقه بندی خوب
پراکندگی + آزمون
معرفی آزمایشگاه: چیز خیلی خوب
راه حل آزمایشگاهی: خیلی چیز خوبی است
پیاده سازی صلیب های ویژگی
تعبیه صلیب های ویژگی
کجا می توان مهندسی ویژگی را انجام داد
ایجاد ویژگی در TensorFlow
ایجاد ویژگی در DataFlow
معرفی آزمایشگاه: بهبود مدل ML با مهندسی ویژگی
[ML on GCP C4] بهبود مدل ML با Feature Engineering
توضیح: ML Fairness
راه حل: بهبود مدل ML با مهندسی ویژگی
معرفی
تبدیل TensorFlow
فاز تجزیه و تحلیل
فاز تبدیل
پشتیبانی از خدمت
کاوش tf.transform
[ML در GCP C4] کاوش tf.transform
کاوش tf.transform
خلاصه
Feature Engineering
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
آموزش مدرن کردن Data Lake و Data Warehouse بوسیله GCP
آموزش کدنویسی و Deploy برنامه های ویندوزی در Google Cloud Platform
آموزش کار با کلود Anthos
آموزش ساخت یک سیستم استریم در Google Cloud Platform
Introduction to Google Calendar
Architecting with Google Kubernetes Engine: Foundations
Building Batch Data Pipelines on Google Cloud
Modernize Infrastructure and Applications with Google Cloud
یادگیری مبانی TensorFlow
آموزش درک و کار کردن بر روی عکس ها بوسیله TensorFlow on GCP
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها