در حال حاضر محصولی در سبد خرید شما وجود ندارد.
در این دوره آموزشی قدم به قدم یاد می گیرید که چطور با Scikit-learn کار کرده و کلاسترینگ انجام دهید.
عنوان اصلی : Building Clustering Models with scikit-learn
بررسی اجمالی دوره
نمای کلی ماژول
پیش نیازها و رئوس مطالب دوره
یادگیری تحت نظارت و بدون نظارت
خوشه بندی اهداف و موارد استفاده
K-به معنای خوشه بندی است
ارزیابی مدل های خوشه بندی
شروع به کار با نصب و راهاندازی با یادگیری scikit
انجام K-به معنی خوشه بندی
ارزیابی K-means Clustering
کاوش مجموعه داده Iris
انجام K-means خوشه بندی و ارزیابی
نمای کلی ماژول
دسته بندی الگوریتم های خوشه بندی
راه اندازی توابع کمکی برای انجام خوشه بندی
انتخاب الگوریتم های خوشه بندی
خوشه بندی سلسله مراتبی
خوشه بندی تجمعی
خوشه بندی DBSCAN
خوشه بندی میانگین تغییر
خوشه بندی توس
خوشه بندی انتشار وابستگی
دسته کوچک K-به معنی خوشه بندی
خوشه بندی طیفی با استفاده از یک ماتریس از پیش محاسبه شده
نمای کلی ماژول
درک امتیاز Silhouette
K-به معنی تعداد خوشه ها: روش آرنج
K-به معنی تعداد خوشه ها: روش Silhouette
دانه ها و اندازه گیری های فاصله
تنظیم فراپارامتر: K-means Clustering
تنظیم فراپارامتر: خوشه بندی DBSCAN
تنظیم فراپارامتر: خوشه بندی میانگین شیفت
نمای کلی ماژول
تصاویر به عنوان ماتریس
کاوش مجموعه داده ارقام دستنویس MNIST
خوشه بندی داده های تصویری
خلاصه و مطالعه بیشتر
Building Clustering Models with scikit-learn
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Foundations of PyTorch
آموزش Deploy کردن راهکارهای یادگیری ماشینی
AI Text Summarization with Hugging Face
Implementing Machine Learning Workflow with RapidMiner
Applying the Mathematical MASS Model with R
AI Workshop: Hands-on with GANs Using Dense Neural Networks
یادگیری تصمیم سازی بر پایه دیتا
Building Your First Python Analytics Solution
Building Image Processing Applications Using scikit-image
Building Features from Numeric Data