وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Time Series Analysis:Hands-On Projects & Advanced Techniques

سرفصل های دوره

Hands-On Time Series with Python: Accessing, Manipulating, Visualizing Data, Master Advanced Techniques & Build Projects


1. Introduction
  • 1. Introduction
  • 2. Jupyter Shortcuts.html
  • 3. Understanding Data Types and Structures in Python.
  • 4. Understanding Python Data Structure Wrap up.

  • 2. Python Refresher
  • 1. String Functions in Python Part 1
  • 2. String Functions in Python Part 2
  • 3. String Functions in Python Part 3
  • 4. String Functions in Python Part 4
  • 5. String Functions in Python Part 5
  • 6. Lists.
  • 7. Tuples.
  • 8. Sets.
  • 9. Dictionaries.
  • 10. Control Flow IF.
  • 11. For Loop Part 1.
  • 12. For Loop Part 2.
  • 13. While Loop Part 1.
  • 14. While Loop Part 2.
  • 15. While Loop Best Practices.
  • 16. Introduction to Functions in Python.
  • 17. Functions in Python and Arguments.
  • 18. Function Tips & Tricks Recursion.
  • 19. Function Tips & Tricks Functions Decorators and Higher Order Functions.
  • 20. Functions Tips & Tricks Lambda Functions.
  • 21. Function Tips & Tricks Functions Caching & Memoization.
  • 22. Error Handling in Python.
  • 23. Files and Modules in Python.

  • 3. Object Oriented Programming (OOP) In Python Refresher
  • 1. Creating Simple Class.
  • 2. Overviewing Constructor.
  • 3. Learning How to creating Dunder Methods
  • 4. Learning about Inheritance.
  • 5. Knowing What is the Encapsulation
  • 6. Learning also about Multiple Inheritance.
  • 7. Knowing What is the Overriding
  • 8. Learning about Decorators.
  • 9. Learning How to use Build-in Decorators

  • 4. Project 1 Python Pandas + PostgreSQL
  • 1. PostgreSQL Downloading & Installing.
  • 2. Create Database.
  • 3. Restore Database.
  • 4. Using CMD & Python pip.PyPi to Install Jupyter Lab & Pandas.
  • 5. Create a CSV File Using PostgreSQL
  • 6. Fetchmany and Fetchall
  • 7. Runnig SQL Query Using Python Panadas Module.
  • 8. Using Python Pandas Package to load PostgreSQL the Data Output file.
  • 9. Data Analysis Process Overview.
  • 10. Pandas Methods.
  • 11. Pandas data visualization.
  • 12. Pandas Data Analysis.
  • 13. Sampling Error.

  • 5. Project 2 Scrape the Web & Saving Data to a Database
  • 1. How to Scrape a website
  • 2. Scrape a Table inside a Webpage using Pandas and LXML Python Modules!
  • 3. Visualization of the Scarped Data.
  • 4. Save The Scraped Data to a Database.

  • 6. Project 3 Python Automation AFC (OS Python Module)
  • 1. Download & Install of Sublime Text Editor.
  • 2. Project Walkthrough.
  • 3. Project Arrange Folder Content.

  • 7. Project 4 Python Automation Project MPF (PyPDF2 Python Module)
  • 1. Project Walkthrough.
  • 2. Project Solution.

  • 8. Project 5 Python Automation Business Email List (smtplib Python Module)
  • 1. Part 1
  • 2. Part 2
  • 3. Part 3

  • 9. Python Numpy Library
  • 1. Numpy Intro.
  • 2. Numpy.shape & Numpy.size
  • 3. Creating Numpy nd arrays using Numpy functions.
  • 4. Numpy.unique( ) & Array slicing.
  • 5. Numpy Calculations and Operators.
  • 6. Numpy Aggregations.
  • 7. Numpy Reshape and Transposing.
  • 8. Comparing Numpy Arrays.
  • 9. Numpy Arrays Images Processing.

  • 10. Accessing, Manipulating & Filtering DataFrames
  • 1. Data manipulation using DataFrames.
  • 2. Accessing Data Using DataFrames.
  • 3. Data aggregation and summarization.
  • 4. Create New Columns, Drop Unnecessary Ones, and Perform Various Data Manipulation
  • 5. Essential Techniques for Peeking at & Describing our Data in Python.
  • 6. Filtering Data.

  • 11. Data Visualization in Python
  • 1. Introduction to Data Visualization in Python.
  • 2. Histograms a Powerful Tool for Visualizing the Distribution of Data.
  • 3. Visualizing Trends using a Real-World Financial Data.
  • 4. Determining and Choosing the Appropriate Plot Type.

  • 12. Time Series Data Analysis using Python
  • 1.1 benchmark data.csv
  • 1.2 financial data.csv
  • 1. Datasets used in this Section..html
  • 2. Introduction to Time Series Analysis.
  • 3. Creating, Converting Datetimes from Strings & Manipulating Datetime Data.
  • 4. Accessing Datetime Attributes, Comparing Datetimes, & Making Relative Datetime.
  • 5. Understanding Time Series Growth Rates & Comparing Stock Prices with a Benchmark
  • 6. Changing Time Series Frequency By Up-Sampling & Interpolation.
  • 7. Changing Time Series Frequency By Down-Sampling.
  • 8. Window Functions in Time Series Analysis.
  • 9. Stocks Prices Series Analysis with Lags.

  • 13. Project 6 Time Series Analysis of Betcoin Historical Data dataset
  • 1. Introduction to this Project.
  • 2. Data Preprocessing and Cleaning.
  • 3. Visualizing Time Series Data.
  • 4. Creating Forecasting Models.
  • 5. Predicting Future Bitcoin Prices.

  • 14. Bonus
  • 1. Thanks.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 39645
    حجم: 3480 مگابایت
    مدت زمان: 495 دقیقه
    تاریخ انتشار: 22 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید