وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Time Series Analysis and Forecasting using Python

سرفصل های دوره

Learn about Time Series Analysis and Forecasting models using Python in just under 11 hours.


1. Introduction
  • 1. Introduction.html

  • 2. Introduction to Time Series Forecasting
  • 1. What is Time Series
  • 2. Time Series vs Regression
  • 3. What is Time Series Analysis

  • 3. Understanding Time Series Data
  • 1. What is Anomaly Detection
  • 2. Components of Time Series
  • 3. Time Series Decomposition
  • 4. Implementation of Decomposition
  • 5. Additive and Multiplicative Decompostion
  • 6. Time Series Stationarity
  • 7. Testing Time Series Staionarity
  • 8. Transformation

  • 4. 4 Preprocessing and Data Cleaning
  • 1. Introduction to Pre-Processing
  • 2. Handle Missing Value
  • 3. Implementation of Handle Missing value in Python
  • 4. Outlier Treatment
  • 5. Sigma Technique (Standard Deviation)
  • 6. Feature Scaling
  • 7. Feature Scaling Technique (Standardization)
  • 8. Feature Scaling Technique (Normalization)
  • 9. Implementation of Feature Scaling
  • 10. Feature Encoding
  • 11. Implementation of Feature Encoding

  • 5. 5 Exploratory Data Analysis
  • 1. Introduction.html
  • 2. What is EDA
  • 3. What is Visualization
  • 4. Data Sourcing
  • 5. Data Cleaning
  • 6. Handling Missing Values (Theory)
  • 7. Handling Missing Values (Practicals)
  • 8. Outlier Treatment
  • 9. Outlier Treatment (Practicals)
  • 10. Types of Analysis
  • 11. Univariate Analysis
  • 12. Bivariate Analysis
  • 13. Multivariate Analysis
  • 14. Numerical Analysis
  • 15. Analysis (Practicals)
  • 16. Derived Metrics
  • 17. Feature Binning (Theory)
  • 18. Feature Binning (Practicals)
  • 19. Feature Encoding (Theory)
  • 20. Feature Encoding (Practicals)

  • 6. 6 Time Series Forecasting Models A Comprehensive Overview
  • 1. Algorithms
  • 2. ARIMA [part 1]
  • 3. ARIMA [part 2]
  • 4. Auto Regressive Theory
  • 5. Moving average Theory
  • 6. Auto-Correlation Function (ACF) &Partical Auto-Correlation Function (PACF)
  • 7. Find PDQ
  • 8. ARIMA [practicals 1]
  • 9. ARIMA [practicals 2]
  • 10. Implementation of ARIMA
  • 11. Decompostion
  • 12. Auto Correlation vs Partical Auto Correlation
  • 13. Choosing the best transformation
  • 14. Grid Search [part 1]
  • 15. Grid Search [part 2]
  • 16. Final Model
  • 17. FBProphet [part 1]
  • 18. FBProphet [part 2]
  • 19. FBProphet [part 3]

  • 7. 7 Multivariate Time Series Forecasting Methods
  • 1. Multi Variate TS Analysis
  • 2. FB Prophet Uni & Multi Variate

  • 8. 8 Evaluating Forecasting Performance
  • 1. Introduction
  • 2. Forecasting Evaluation Metrics
  • 3. Mean Squarred Error
  • 4. Root Mean Sqaured Error
  • 5. Mean Absolute Percentage Error

  • 9. 9 Time Series Forecasting in Practice Case Studies
  • 1. Project 1 - Energy Demand Forecasting [part 1]
  • 2. Project 1 - Energy Demand Forecasting [part 2]
  • 3. Project 1 - Energy Demand Forecasting [part 3]
  • 4. Project 2 - Stock Market Prediction [part 1]
  • 5. Project 2 - Stock Market Prediction [part 2]
  • 6. Project 2 - Stock Market Prediction [part 3]
  • 7. Project 3 - Demand Forecasting [part 1]
  • 8. Project 3 - Demand Forecasting [part 2]
  • 9. Project 3 - Demand Forecasting [part 3]
  • 10. Project 3 - Demand Forecasting [part 4]
  • 11. Project 3 - Demand Forecasting [part 5]
  • 12. Project 3 - Demand Forecasting [part 6]
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 32612
    حجم: 4181 مگابایت
    مدت زمان: 606 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید