وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

The 2024 Pandas Bootcamp: Advanced Data Analysis with Python

سرفصل های دوره

Master Pandas and Python with real-world datasets and 200+ hands-on exercises! Go from beginner to expert Data Analyst!


1 - Introduction
  • 1 -Welcome to the Course!
  • 2 - IMPORTANT Example Files (and Exercise Solutions!).html

  • 2 - Python Crash Course
  • 1 -What Is Programming
  • 1 - Note to Students PLEASE READ.html
  • 2 -The Programming Environment
  • 3 -Values and Types
  • 3 - The Programming Environment - Exercises.html
  • 4 -Functions
  • 5 -Expressions
  • 6 -Expressions in Colab
  • 7 -Variables
  • 7 - Expressions in Colab - Exercises.html
  • 8 -Naming Variables
  • 8 - Variables - Exercises.html
  • 9 -Errors
  • 10 -Comments
  • 11 -Text Cells
  • 12 -Colab Tips and Pitfalls
  • 12 - Text Cells - Exercises.html
  • 13 -Objects, Attributes, and Methods
  • 14 -Modules and Libraries
  • 14 -STEM Salaries.csv
  • 15 -Lists
  • 16 -Tuples
  • 17 -Dictionaries
  • 18 - Data Structures - Exercises.html

  • 3 - Working with DataFrames
  • 1 -Introducing DataFrames
  • 1 - IMPORTANT DOWNLOAD EXAMPLE DATASETS.html
  • 2 -Introducing the Example Datasets
  • 2 - Introducing DataFrames - Exercises.html
  • 3 -DataFrames and the read csv Method - Part I
  • 4 -DataFrames and the read csv Method - Part II
  • 5 -Providing DataFrame Column Names
  • 5 - DataFrames and the read csv Method - Exercises.html
  • 6 -Inspecting DataFrames
  • 6 - Providing DataFrame Column Names - Exercises.html
  • 7 -Data Types and the info Method
  • 7 - Inspecting DataFrames - Exercises.html
  • 8 -Renaming Columns
  • 8 - Data Types and the info Method - Exercises.html
  • 9 -Dropping Columns
  • 9 - Renaming Columns - Exercises.html
  • 10 -Selecting Columns
  • 10 - Dropping Columns - Exercises.html
  • 11 - Selecting Columns - Exercises.html

  • 4 - Working with Series
  • 1 -Series 101
  • 2 -Converting Series with to numeric
  • 2 - Series 101 - Exercises.html
  • 3 -Converting Series with to datetime
  • 3 - Converting Series with to numeric - Exercises.html
  • 4 -Adding Columns (Series) to DataFrames
  • 4 - Converting Series with to datetime - Exercises.html
  • 5 -Creating Derived Columns
  • 5 - Adding Columns (Series) to DataFrames - Exercises.html
  • 6 -The assign Method
  • 6 - Creating Derived Columns - Exercises.html
  • 7 - The assign Method - Exercises.html

  • 5 - Basic Data Analysis with Pandas
  • 1 -The sum Method
  • 2 -The count Method
  • 2 - The sum Method - Exercises.html
  • 3 -Mean and Median
  • 3 - The count Method - Exercises.html
  • 4 -Standard Deviation and the describe Method
  • 4 - Mean and Median - Exercises.html
  • 5 -Using describe on Non-Numeric Fields
  • 5 - Standard Deviation and the describe Method - Exercises.html
  • 6 -The unique and nunique Methods
  • 6 - Using describe on Non-Numeric Fields - Exercises.html
  • 7 -The value counts Method
  • 7 - The unique and nunique Methods - Exercises.html
  • 8 - The value counts Method - Exercises.html

  • 6 - Indexing and Sorting
  • 1 -The iloc Method
  • 2 -Indexing Basics
  • 2 - The iloc Method - Exercises.html
  • 3 -The loc Method
  • 3 - Indexing Basics - Exercises.html
  • 4 -Sorting by Index
  • 4 - The loc Method - Exercises.html
  • 5 -Sorting By Columns
  • 5 - Sorting by Index - Exercises.html
  • 6 -Dropping Rows By Index
  • 6 - Sorting By Columns - Exercises.html
  • 7 - Dropping Rows By Index - Exercises.html

  • 7 - Selecting Data with Criteria
  • 1 -Filtering DataFrames with a Boolean Series
  • 2 -Applying Other Logical Conditions
  • 2 - Filtering DataFrames with a Boolean Series - Exercises.html
  • 3 -The between and isin Methods
  • 3 - Applying Other Logical Conditions - Exercises.html
  • 4 -Combining Conditions Using the & Operator
  • 4 - The between and isin Methods - Exercises.html
  • 5 -Combining Conditions Using the Operator
  • 5 - Combining Conditions Using the & Operator - Exercises.html
  • 6 -Combining And & Or Logic
  • 6 - Combining Conditions Using the Operator - Exercises.html
  • 7 -Negation
  • 7 - Combining And & Or Logic - Exercises.html
  • 8 -The isna Method
  • 8 - Negation - Exercises.html
  • 9 - The isna Method - Exercises.html

  • 8 - Updating DataFrames
  • 1 -Updating DataFrame Values with loc
  • 2 -Replacing DataFrame Values
  • 2 - Updating DataFrame Values with loc - Exercises.html
  • 3 -Updating Values with Boolean Masks
  • 3 - Replacing DataFrame Values - Exercises.html
  • 4 -Removing Null Values
  • 4 - Updating Values with Boolean Masks - Exercises.html
  • 5 -Replacing Null Values
  • 5 - Removing Null Values - Exercises.html
  • 6 -Identifying Duplicate Data
  • 6 - Replacing Null Values - Exercises.html
  • 7 -Removing Duplicate Data
  • 8 - Identifying and Removing Duplicate Data - Exercises.html

  • 9 - Combining Datasets
  • 1 -Stacking Datasets Vertically I
  • 2 -Orders 2021.csv
  • 2 -Orders 2022.csv
  • 2 -Orders 2023.csv
  • 2 -Stacking Datasets Vertically II
  • 3 -Fetching Excel Data Into Pandas
  • 3 -Orders.xlsx
  • 3 -Order Details 2021.csv
  • 3 -Order Details 2022.csv
  • 3 -Order Details 2023.csv
  • 3 - Stacking Datasets Vertically - Exercises.html
  • 4 -Customers.csv
  • 4 -Joining DataFrames Horizontally I
  • 4 -Orders 2021.csv
  • 4 -Order Details.xlsx
  • 4 - Fetching Excel Data Into Pandas - Exercises.html
  • 5 -Joining DataFrames Horizontally II
  • 6 -Customers.csv
  • 6 -Left and Right Joins
  • 6 -Orders 2021.csv
  • 6 -Order Details 2021.csv
  • 6 -Products.csv
  • 6 - Joining DataFrames Horizontally - Exercises.html
  • 7 -Full Outer Joins
  • 8 -Combining More Than Two Tables
  • 8 -Customers.csv
  • 8 -Orders 2021.csv
  • 8 -Order Details 2021.csv
  • 8 -Order Details 2022.csv
  • 8 -Order Details 2023.csv
  • 8 -Products.csv
  • 8 - Outer Joins - Exercises.html
  • 9 -Customers.csv
  • 9 -Orders 2022.csv
  • 9 -Order Details 2022.csv
  • 9 -Products.csv
  • 9 - Combining More Than Two Tables - Exercises.html

  • 10 - Grouping and Aggregation
  • 1 -Grouping and Aggregation 101
  • 2 -Applying Multiple Aggregations
  • 2 - Grouping and Aggregation 101 - Exercises.html
  • 3 -Grouping By Multiple Columns
  • 3 - Applying Multiple Aggregations - Exercises.html
  • 4 -The transform Method
  • 4 - Grouping By Multiple Columns - Exercises.html
  • 5 -Pythonic Pivot Tables
  • 5 - The transform Method - Exercises.html
  • 6 - Pythonic Pivot Tables - Exercises.html

  • 11 - Working with String Data
  • 1 -upper, lower, and capitalize
  • 2 -The len Method
  • 2 - upper, lower, and capitalize - Exercises.html
  • 3 -Regular Expressions 101
  • 3 - The len Method - Exercises.html
  • 4 -Matching Digits with Regular Expressions
  • 4 - Regular Expressions 101 - Exercise.html
  • 5 -The contains Method
  • 5 - Matching Digits with Regular Expressions - Exercises.html
  • 6 -The replace Method I
  • 6 - The contains Method - Exercises.html
  • 7 -The replace Method II
  • 8 - The replace Method - Exercises.html

  • 12 - Working with Datetime Data
  • 1 -Using Datetime Values as Criteria
  • 2 -The datetime Module I
  • 2 - Using Datetime Values as Criteria - Exercises.html
  • 3 -The datetime Module II
  • 4 -Date Math in Pandas
  • 4 - The datetime Module - Exercises.html
  • 5 -The shift Method I
  • 5 - Date Math in Pandas - Exercises.html
  • 6 -The shift Method II
  • 7 -Calculating rolling Averages
  • 7 - The shift Method - Exercises.html
  • 8 - Calculating rolling Averages - Exercises.html

  • 13 - Data Visualization with Pandas
  • 1 -Data Visualization 101.1
  • 2 -Data Visualization 101.2
  • 3 -Bar Plots
  • 3 - Data Visualization - Exercises.html
  • 4 -Scatter Plots
  • 4 - Bar Plots - Exercises.html
  • 5 -Customizing Plot Appearance
  • 5 - Scatter Plots - Exercises.html
  • 6 -Customizing Plot Axes
  • 7 - Customizing Plots - Exercises.html

  • 14 - Functional Programming in Python
  • 1 -Apply-ing Functions to Data Analysis
  • 2 -If Statements in Python
  • 3 -Incorporating Multiple Logical Conditions
  • 4 -Incorporating And and Or Logic
  • 5 -Functions in Python
  • 5 - If Statements - Exercises.html
  • 6 -Returning Values From Functions I
  • 7 -Returning Values From Functions II
  • 8 - Functions - Exercises.html

  • 15 - Leveraging the map and apply Methods
  • 1 -The map Method
  • 2 -Using map with Custom Functions I
  • 2 - The map Method - Exercises.html
  • 3 -Using map with Custom Functions II
  • 4 -The apply Method
  • 4 - Using map with Custom Functions - Exercises.html
  • 5 -Applying apply to Multiple Columns
  • 5 - The apply Method - Exercises.html
  • 6 - Applying apply to Multiple Columns - Exercises.html

  • 16 - BONUS LESSON
  • 1 - BONUS LESSON.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 42749
    حجم: 6081 مگابایت
    مدت زمان: 1127 دقیقه
    تاریخ انتشار: ۲۸ دی ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید