وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Supervised Learning – Regression Models

سرفصل های دوره

Supervised Learning - Regression Models


1 - Introduction
  • 1 - Introduction About Tutor

  • 2 - Introduction About Basics
  • 2 - Agenda and stages of Analytics
  • 3 - What is Diagnoistic Analytics
  • 4 - What is Predictive Analytics
  • 5 - What is Prescriptive Analytics
  • 6 - What is CRISPMLQ

  • 3 - Business Understanding Phase
  • 7 - Business Understanding Define Scope Of Application
  • 8 - Business Understanding Define Success Criteria
  • 9 - Business Understanding Use Cases

  • 4 - Data Understanding Phase Data Types
  • 10 - Agenda Data Understanding
  • 11 - Introduction to Data Understanding
  • 12 - Data Types Continuous Vs Discrete
  • 13 - Categorical Data Vs Count Data
  • 14 - Pratical Data Understanding using Realtime Examples
  • 15 - Scale of Measurement
  • 16 - Quantitave Vs Qualitative
  • 17 - Structure Vs Unstructured Data
  • 18 - Big Data vs Non Big Data

  • 5 - Data Understanding Phase Data Collection
  • 19 - What is Data Collection
  • 20 - Understanding Primary Data Sources
  • 21 - Understanding Secondary Data Sources
  • 22 - Understanding Data Collection Using Survey
  • 23 - Understanding Data Collection Using DoE
  • 24 - Understanding possible errors in Data Collection Stage
  • 25 - Understanding Bias and Fairness

  • 6 - Understanding Basic Statistics
  • 26 - Introduction to CRISPMLQ Data preparation & Agenda
  • 27 - What is Probability
  • 28 - What is Random Variable
  • 29 - Understanding Probability and its Application Probability Discussion

  • 7 - Data Preparation Phase Exploratory Data Analysis EDA
  • 30 - Understanding Normal Distribution
  • 31 - What is Inferential Statistics
  • 32 - Understanding Standard Normal Distribution & what is Z Scores
  • 33 - Understanding Measures of central tendency First moment business decision
  • 34 - Understanding Measures of Dispersion Second moment business decision
  • 35 - Understanding Box PlotDiff Bw Percentile and Quantile and Quartile
  • 36 - Understanding Graphical TechniquesQQPlot
  • 37 - Understanding about Bivariate Scatter Plot

  • 8 - Python Installation and Setup
  • 38 - Python Installation
  • 39 - Anakonda Installation
  • 40 - Understand about Anakonda Navigator Spyder & Python Libraries
  • 41 - Understanding about Jupyter and Google Colab

  • 9 - Data Preparation Phase Data Cleansing Type Casting
  • 42 - Understanding Data Cleansing Typecasting
  • 43 - Understanding Data Cleansing Typecasting using python

  • 10 - Data Preparation Phase Data Cleansing Handling Duplicates
  • 44 - Understanding Handling Duplicates
  • 45 - Understanding Handling Duplicates using Python

  • 11 - Data Preparation Phase Data CleansingOutlier Analysis Treatment
  • 46 - Understanding Outlier Analysis Treatment
  • 47 - Understanding Outlier Analysis Treatment using Python

  • 12 - Data Mining Clustering Segmentation using Python
  • 48 - Overview Of Clustering Segmentation
  • 49 - Distance Between Clusters
  • 50 - Learning Clustering Using Python

  • 13 - Dimension Reduction Technique
  • 51 - About Dimension Reduction & its Applications

  • 14 - Network Analysis
  • 52 - Elements of a Network
  • 53 - About Google PageRank Algorithm
  • 54 - Network Based Similarity Metrics
  • 55 - Network related Properties

  • 15 - Traditional ML Models Naive Bayes
  • 56 - Introduction to Naive Bayes
  • 57 - Use Cases of Naive Bayes

  • 16 - Decision Tree
  • 58 - About Decision Tree and its Use Case

  • 17 - About Stacking
  • 59 - What is Stacking

  • 18 - About Boosting
  • 60 - Introduction about Boosting

  • 19 - Introduction About Regression Analysis
  • 61 - Introduction About Regression Analysis

  • 20 - Lets know More In About What are the Regression Models
  • 62 - About Simple Liner Regression and its Use Cases
  • 63 - About Multiple Linear Regression
  • 64 - About Simple Logistic and Multiple Logistic Regression
  • 65 - About Multimonial Regression
  • 66 - About Ordinal Regression
  • 67 - About Negative BiNomial Regression
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18837
    حجم: 4391 مگابایت
    مدت زمان: 793 دقیقه
    تاریخ انتشار: 14 شهریور 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید