وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Stop Being a Beginner in Machine Learning in 2024 | Python

سرفصل های دوره

Master Machine Learning | Data Science using Python only 10 Hours with real-world practices - machine learning projects.


1 - Introduction
  • 1 - Introduction
  • 2 - Course Structure
  • 2 - Interview-Questions.pdf
  • 2 - telecom-customer-churn.csv
  • 2 - telecom-zipcode-population.csv

  • 2 - What is Data Science Machine Learning and Data Science Project Process
  • 3 - Lets Begin
  • 4 - All about Machine LearningLets make first Machine Learning model without code
  • 5 - Data Science Project Process

  • 3 - Environment Setup
  • 6 - Anaconda Installation Windows
  • 7 - Anaconda Installation MacOS

  • 4 - Toolkit Intro Statistics and python pandas numpy matplotlib and seaborn Recap
  • 8 - Basic Statistics Intro
  • 9 - pandas Intro
  • 10 - numpy Intro
  • 11 - matplotlib and seaborn Intro

  • 5 - Data Preprocessing with Handson Python
  • 12 - First Glance to Our Dataset
  • 13 - Reading Data into Python
  • 14 - Detecting Data Leak and Eliminate the Leakage
  • 15 - Null Handling
  • 16 - Encoding
  • 17 - Feature Engineering on Our Geoghraphical Data

  • 6 - Machine Learning Classification Algorithms All the Logic Behind Them
  • 18 - Logistic Regression Logic
  • 19 - Logistic Regression Key Takeaways
  • 20 - kNN Classifier Logic and Key Takeaways
  • 21 - Decision Tree Classifier Logic
  • 22 - Logistic Regression kNN and Decision Tree Algorithms Wrapup
  • 23 - There Are Some Inexpensive Lunches in Machine Learning
  • 24 - Random Forest Classifier Logic Bagging Algorithm
  • 25 - LightGBM Logic Boosting Algorithm
  • 26 - XGBoost Logic

  • 7 - General Modelling Concepts
  • 27 - Train Test Split and OverfitUnderfit
  • 28 - More on OverfitUnderfit Concept

  • 8 - Classification Model Evaluation Metrics
  • 29 - Classification Model Evaluation Metrics

  • 9 - Logistic Regression Classifier and kNN Classifier Handson in Python
  • 30 - Data Recap Separation and Train Test Split
  • 31 - Outlier Elimination
  • 32 - Take a Look at the Test Set Considering Outliers
  • 33 - Feature Scaling
  • 34 - Update the Train Labels After Outlier Elimination
  • 35 - Logistic Regression in Python
  • 36 - kNN Classifier in Python

  • 10 - Decision Tree Classifier and Random Forest Classifier Handson in Python
  • 37 - Decision Tree Classifier in Python
  • 38 - Random Forest Classifier in Python

  • 11 - LightGBM Classifier and XGBoost Classifier Handson in Python
  • 39 - LightGBM Classifier in Python
  • 40 - XGBoost Classifier in Python

  • 12 - Classification Model Selection Feature Importance and Final Delivery
  • 41 - Classification Model Selection
  • 42 - Feature Importance Concept
  • 43 - LightGBM Classifier Feature Importance
  • 44 - LightGBM Classifier Retrain with Top Features
  • 45 - Final Prediction for Joined Customers

  • 13 - MultiClass Classification Handson in Python
  • 46 - MultiClass Classification Explanation
  • 47 - MultiClass Classification in Python

  • 14 - Machine Learning Regression Models Algorithms and Evaluation
  • 48 - Regression Introduction
  • 49 - Linear Regression Logic
  • 50 - kNN Decision Tree Random Forest LGBM and XGBoost Regressors Logic
  • 51 - Regression Model Evaluation Metrics

  • 15 - Regression Models in Python Handson Modelling
  • 52 - Linear Regression in Python
  • 53 - LightGBM Regressor in Python

  • 16 - Unsupervised Learning Clustering Logic and Python Implementation
  • 54 - Unsupervised Learning Logic and Use Cases
  • 55 - K Means Clustering Logic
  • 56 - Evaluation of Clustering
  • 57 - Do the Scaling Before KMeans
  • 58 - KMeans Clustering in Python

  • 17 - You Made It
  • 59 - Congratz
  • 59 - telecom-churn-data-science.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 33354
    حجم: 4485 مگابایت
    مدت زمان: 607 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید