وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Stop Being a Beginner in Machine Learning in 2024 | Python

سرفصل های دوره

Master Machine Learning | Data Science using Python only 10 Hours with real-world practices - machine learning projects.


1 - Introduction
  • 1 - Introduction
  • 2 - Course Structure
  • 2 - Interview-Questions.pdf
  • 2 - telecom-customer-churn.csv
  • 2 - telecom-zipcode-population.csv

  • 2 - What is Data Science Machine Learning and Data Science Project Process
  • 3 - Lets Begin
  • 4 - All about Machine LearningLets make first Machine Learning model without code
  • 5 - Data Science Project Process

  • 3 - Environment Setup
  • 6 - Anaconda Installation Windows
  • 7 - Anaconda Installation MacOS

  • 4 - Toolkit Intro Statistics and python pandas numpy matplotlib and seaborn Recap
  • 8 - Basic Statistics Intro
  • 9 - pandas Intro
  • 10 - numpy Intro
  • 11 - matplotlib and seaborn Intro

  • 5 - Data Preprocessing with Handson Python
  • 12 - First Glance to Our Dataset
  • 13 - Reading Data into Python
  • 14 - Detecting Data Leak and Eliminate the Leakage
  • 15 - Null Handling
  • 16 - Encoding
  • 17 - Feature Engineering on Our Geoghraphical Data

  • 6 - Machine Learning Classification Algorithms All the Logic Behind Them
  • 18 - Logistic Regression Logic
  • 19 - Logistic Regression Key Takeaways
  • 20 - kNN Classifier Logic and Key Takeaways
  • 21 - Decision Tree Classifier Logic
  • 22 - Logistic Regression kNN and Decision Tree Algorithms Wrapup
  • 23 - There Are Some Inexpensive Lunches in Machine Learning
  • 24 - Random Forest Classifier Logic Bagging Algorithm
  • 25 - LightGBM Logic Boosting Algorithm
  • 26 - XGBoost Logic

  • 7 - General Modelling Concepts
  • 27 - Train Test Split and OverfitUnderfit
  • 28 - More on OverfitUnderfit Concept

  • 8 - Classification Model Evaluation Metrics
  • 29 - Classification Model Evaluation Metrics

  • 9 - Logistic Regression Classifier and kNN Classifier Handson in Python
  • 30 - Data Recap Separation and Train Test Split
  • 31 - Outlier Elimination
  • 32 - Take a Look at the Test Set Considering Outliers
  • 33 - Feature Scaling
  • 34 - Update the Train Labels After Outlier Elimination
  • 35 - Logistic Regression in Python
  • 36 - kNN Classifier in Python

  • 10 - Decision Tree Classifier and Random Forest Classifier Handson in Python
  • 37 - Decision Tree Classifier in Python
  • 38 - Random Forest Classifier in Python

  • 11 - LightGBM Classifier and XGBoost Classifier Handson in Python
  • 39 - LightGBM Classifier in Python
  • 40 - XGBoost Classifier in Python

  • 12 - Classification Model Selection Feature Importance and Final Delivery
  • 41 - Classification Model Selection
  • 42 - Feature Importance Concept
  • 43 - LightGBM Classifier Feature Importance
  • 44 - LightGBM Classifier Retrain with Top Features
  • 45 - Final Prediction for Joined Customers

  • 13 - MultiClass Classification Handson in Python
  • 46 - MultiClass Classification Explanation
  • 47 - MultiClass Classification in Python

  • 14 - Machine Learning Regression Models Algorithms and Evaluation
  • 48 - Regression Introduction
  • 49 - Linear Regression Logic
  • 50 - kNN Decision Tree Random Forest LGBM and XGBoost Regressors Logic
  • 51 - Regression Model Evaluation Metrics

  • 15 - Regression Models in Python Handson Modelling
  • 52 - Linear Regression in Python
  • 53 - LightGBM Regressor in Python

  • 16 - Unsupervised Learning Clustering Logic and Python Implementation
  • 54 - Unsupervised Learning Logic and Use Cases
  • 55 - K Means Clustering Logic
  • 56 - Evaluation of Clustering
  • 57 - Do the Scaling Before KMeans
  • 58 - KMeans Clustering in Python

  • 17 - You Made It
  • 59 - Congratz
  • 59 - telecom-churn-data-science.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 33354
    حجم: 4485 مگابایت
    مدت زمان: 607 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید