وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Time Series Data Analysis

سرفصل های دوره

Learn how to use Python , Pandas, Numpy , and Statsmodels for Time Series Forecasting and Analysis!


1 - Introduction
  • 1 - Course Overview Check.html
  • 1 - Course Overview PLEASE DO NOT SKIP THIS LECTURE
  • 1 - UDEMY-TSA-FINAL.zip
  • 2 - Course Curriculum Overview
  • 3 - FAQ Frequently Asked Questions.html
  • 3 - UDEMY-TSA-FINAL.zip

  • 2 - Course Set Up and Install
  • 4 - Installing Anaconda Python Distribution and Jupyter
  • 4 - UDEMY-TSA-FINAL.zip
  • 4 - the yml file.zip

  • 3 - NumPy
  • 5 - NumPy Section Overview
  • 6 - NumPy Arrays Part One
  • 7 - NumPy Arrays Part Two
  • 8 - NumPy Indexing and Selection
  • 9 - NumPy Operations
  • 10 - NumPy Exercises
  • 11 - NumPy Exercise Solutions

  • 4 - Pandas Overview
  • 12 - Introduction to Pandas
  • 13 - Series
  • 14 - DataFrames Part One
  • 15 - DataFrames Part Two
  • 16 - Missing Data with Pandas
  • 17 - Group By Operations
  • 18 - Common Operations
  • 19 - Data Input and Output
  • 20 - Pandas Exercises
  • 21 - Pandas Exercises Solutions

  • 5 - Data Visualization with Pandas
  • 22 - Overview of Capabilities of Data Visualization with Pandas
  • 23 - Visualizing Data with Pandas
  • 24 - Customizing Plots created with Pandas
  • 25 - Pandas Data Visualization Exercise
  • 26 - Pandas Data Visualization Exercise Solutions

  • 6 - Time Series with Pandas
  • 27 - Overview of Time Series with Pandas
  • 28 - DateTime Index
  • 29 - DateTime Index Part Two
  • 30 - Time Resampling
  • 31 - Time Shifting
  • 32 - Rolling and Expanding
  • 33 - Visualizing Time Series Data
  • 34 - Visualizing Time Series Data Part Two
  • 35 - Time Series Exercises Set One
  • 36 - Time Series Exercises Set One Solutions
  • 37 - Time Series with Pandas Project Exercise Set Two
  • 38 - Time Series with Pandas Project Exercise Set Two Solutions

  • 7 - Time Series Analysis with Statsmodels
  • 39 - Introduction to Time Series Analysis with Statsmodels
  • 40 - Introduction to Statsmodels Library
  • 41 - ETS Decomposition
  • 42 - EWMA Theory
  • 43 - EWMA Exponentially Weighted Moving Average
  • 44 - Holt Winters Methods Theory
  • 45 - Holt Winters Methods Code Along Part One
  • 46 - Holt Winters Methods Code Along Part Two
  • 47 - Statsmodels Time Series Exercises
  • 48 - Statsmodels Time Series Exercise Solutions

  • 8 - General Forecasting Models
  • 49 - Introduction to General Forecasting Section
  • 50 - Introduction to Forecasting Models Part One
  • 51 - Evaluating Forecast Predictions
  • 52 - Introduction to Forecasting Models Part Two
  • 53 - ACF and PACF Theory
  • 54 - ACF and PACF Code Along
  • 55 - ARIMA Overview
  • 56 - Autoregression AR Overview
  • 57 - Autoregression AR with Statsmodels
  • 58 - Descriptive Statistics and Tests Part One
  • 59 - Descriptive Statistics and Tests Part Two
  • 60 - Descriptive Statistics and Tests Part Three
  • 61 - ARIMA Theory Overview
  • 62 - Choosing ARIMA Orders Part One
  • 63 - Choosing ARIMA Orders Part Two
  • 64 - ARMA and ARIMA AutoRegressive Integrated Moving Average Part One
  • 65 - ARMA and ARIMA AutoRegressive Integrated Moving Average Part Two
  • 66 - SARIMA Seasonal Autoregressive Integrated Moving Average
  • 67 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART ONE
  • 68 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART TWO
  • 69 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART 3
  • 70 - Vector AutoRegression VAR
  • 71 - VAR Code Along
  • 72 - VAR Code Along Part Two
  • 73 - Vector AutoRegression Moving Average VARMA
  • 74 - Vector AutoRegression Moving Average VARMA Code Along
  • 75 - Forecasting Exercises
  • 76 - Forecasting Exercises Solutions

  • 9 - Deep Learning for Time Series Forecasting
  • 2 - Quick Check on MultiVariate Time Series Notebook and Data.html
  • 77 - Introduction to Deep Learning Section
  • 78 - Perceptron Model
  • 79 - Introduction to Neural Networks
  • 80 - Keras Basics
  • 81 - Recurrent Neural Network Overview
  • 82 - LSTMS and GRU
  • 83 - Keras and RNN Project Part One
  • 84 - Keras and RNN Project Part Two
  • 85 - Keras and RNN Project Part Three
  • 86 - Keras and RNN Exercise
  • 87 - Keras and RNN Exercise Solutions
  • 88 - BONUS Multivariate Time Series with RNN.html
  • 88 - MultiVariate-RNN-with-TensorFlow-and-Keras-master.zip
  • 89 - BONUS Multivariate Time Series with RNN

  • 10 - Facebooks Prophet Library
  • 90 - Overview of Facebooks Prophet Library
  • 91 - Facebooks Prophet Library
  • 92 - Facebook Prophet Evaluation
  • 93 - Facebook Prophet Trend
  • 94 - Facebook Prophet Seasonality

  • 11 - BONUS SECTION THANK YOU
  • 95 - BONUS LECTURE.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 8140
    حجم: 6252 مگابایت
    مدت زمان: 918 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید