وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Time Series Data Analysis

سرفصل های دوره

Learn how to use Python , Pandas, Numpy , and Statsmodels for Time Series Forecasting and Analysis!


1 - Introduction
  • 1 - Course Overview Check.html
  • 1 - Course Overview PLEASE DO NOT SKIP THIS LECTURE
  • 1 - UDEMY-TSA-FINAL.zip
  • 2 - Course Curriculum Overview
  • 3 - FAQ Frequently Asked Questions.html
  • 3 - UDEMY-TSA-FINAL.zip

  • 2 - Course Set Up and Install
  • 4 - Installing Anaconda Python Distribution and Jupyter
  • 4 - UDEMY-TSA-FINAL.zip
  • 4 - the yml file.zip

  • 3 - NumPy
  • 5 - NumPy Section Overview
  • 6 - NumPy Arrays Part One
  • 7 - NumPy Arrays Part Two
  • 8 - NumPy Indexing and Selection
  • 9 - NumPy Operations
  • 10 - NumPy Exercises
  • 11 - NumPy Exercise Solutions

  • 4 - Pandas Overview
  • 12 - Introduction to Pandas
  • 13 - Series
  • 14 - DataFrames Part One
  • 15 - DataFrames Part Two
  • 16 - Missing Data with Pandas
  • 17 - Group By Operations
  • 18 - Common Operations
  • 19 - Data Input and Output
  • 20 - Pandas Exercises
  • 21 - Pandas Exercises Solutions

  • 5 - Data Visualization with Pandas
  • 22 - Overview of Capabilities of Data Visualization with Pandas
  • 23 - Visualizing Data with Pandas
  • 24 - Customizing Plots created with Pandas
  • 25 - Pandas Data Visualization Exercise
  • 26 - Pandas Data Visualization Exercise Solutions

  • 6 - Time Series with Pandas
  • 27 - Overview of Time Series with Pandas
  • 28 - DateTime Index
  • 29 - DateTime Index Part Two
  • 30 - Time Resampling
  • 31 - Time Shifting
  • 32 - Rolling and Expanding
  • 33 - Visualizing Time Series Data
  • 34 - Visualizing Time Series Data Part Two
  • 35 - Time Series Exercises Set One
  • 36 - Time Series Exercises Set One Solutions
  • 37 - Time Series with Pandas Project Exercise Set Two
  • 38 - Time Series with Pandas Project Exercise Set Two Solutions

  • 7 - Time Series Analysis with Statsmodels
  • 39 - Introduction to Time Series Analysis with Statsmodels
  • 40 - Introduction to Statsmodels Library
  • 41 - ETS Decomposition
  • 42 - EWMA Theory
  • 43 - EWMA Exponentially Weighted Moving Average
  • 44 - Holt Winters Methods Theory
  • 45 - Holt Winters Methods Code Along Part One
  • 46 - Holt Winters Methods Code Along Part Two
  • 47 - Statsmodels Time Series Exercises
  • 48 - Statsmodels Time Series Exercise Solutions

  • 8 - General Forecasting Models
  • 49 - Introduction to General Forecasting Section
  • 50 - Introduction to Forecasting Models Part One
  • 51 - Evaluating Forecast Predictions
  • 52 - Introduction to Forecasting Models Part Two
  • 53 - ACF and PACF Theory
  • 54 - ACF and PACF Code Along
  • 55 - ARIMA Overview
  • 56 - Autoregression AR Overview
  • 57 - Autoregression AR with Statsmodels
  • 58 - Descriptive Statistics and Tests Part One
  • 59 - Descriptive Statistics and Tests Part Two
  • 60 - Descriptive Statistics and Tests Part Three
  • 61 - ARIMA Theory Overview
  • 62 - Choosing ARIMA Orders Part One
  • 63 - Choosing ARIMA Orders Part Two
  • 64 - ARMA and ARIMA AutoRegressive Integrated Moving Average Part One
  • 65 - ARMA and ARIMA AutoRegressive Integrated Moving Average Part Two
  • 66 - SARIMA Seasonal Autoregressive Integrated Moving Average
  • 67 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART ONE
  • 68 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART TWO
  • 69 - SARIMAX Seasonal Autoregressive Integrated Moving Average Exogenous PART 3
  • 70 - Vector AutoRegression VAR
  • 71 - VAR Code Along
  • 72 - VAR Code Along Part Two
  • 73 - Vector AutoRegression Moving Average VARMA
  • 74 - Vector AutoRegression Moving Average VARMA Code Along
  • 75 - Forecasting Exercises
  • 76 - Forecasting Exercises Solutions

  • 9 - Deep Learning for Time Series Forecasting
  • 2 - Quick Check on MultiVariate Time Series Notebook and Data.html
  • 77 - Introduction to Deep Learning Section
  • 78 - Perceptron Model
  • 79 - Introduction to Neural Networks
  • 80 - Keras Basics
  • 81 - Recurrent Neural Network Overview
  • 82 - LSTMS and GRU
  • 83 - Keras and RNN Project Part One
  • 84 - Keras and RNN Project Part Two
  • 85 - Keras and RNN Project Part Three
  • 86 - Keras and RNN Exercise
  • 87 - Keras and RNN Exercise Solutions
  • 88 - BONUS Multivariate Time Series with RNN.html
  • 88 - MultiVariate-RNN-with-TensorFlow-and-Keras-master.zip
  • 89 - BONUS Multivariate Time Series with RNN

  • 10 - Facebooks Prophet Library
  • 90 - Overview of Facebooks Prophet Library
  • 91 - Facebooks Prophet Library
  • 92 - Facebook Prophet Evaluation
  • 93 - Facebook Prophet Trend
  • 94 - Facebook Prophet Seasonality

  • 11 - BONUS SECTION THANK YOU
  • 95 - BONUS LECTURE.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 8140
    حجم: 6252 مگابایت
    مدت زمان: 918 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید