وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Deep Learning and Artificial Intelligence

سرفصل های دوره

Neural Networks, TensorFlow, ANN, CNN, RNN, LSTM, Transfer Learning and Much More


1. Course Setup
  • 1.1 python-for-deep-learning-and-ai.zip
  • 1. Jupyter Notebook Introduction

  • 2. Python for Deep Learning
  • 1. Python Introduction Part 1
  • 2. Python Introduction Part 2
  • 3. Python Introduction Part 3
  • 4. Numpy Introduction Part 1
  • 5. Numpy Introduction Part 2
  • 6. Pandas Introduction
  • 7. Matplotlib Introduction Part 1
  • 8. Matplotlib Introduction Part 2
  • 9. Seaborn Introduction Part 1
  • 10. Seaborn Introduction Part 2

  • 3. Introduction to Machine Learning
  • 1. Classical Machine Learning Introduction
  • 2. Logistic Regression
  • 3. Support Vector Machine - SVM
  • 4. Decision Tree
  • 5. Random Forest
  • 6. L2 Regularization
  • 7. L1 Regularization
  • 8. Model Evaluation
  • 9. ROC-AUC Curve
  • 10. Code Along in Python Part 1
  • 11. Code Along in Python Part 2
  • 12. Code Along in Python Part 3
  • 13. Code Along in Python Part 4

  • 4. Introduction to Deep Learning and TensorFlow
  • 1. Machine Learning Process Introduction
  • 2. Types of Machine Learning
  • 3. Supervised Learning
  • 4. Unsupervised Learning
  • 5. Reinforcement Learning
  • 6. What is Deep Learning and ML
  • 7. What is Neural Network
  • 8. How Deep Learning Process Works
  • 9. Application of Deep Learning
  • 10. Deep Learning Tools
  • 11. MLops with AWS

  • 5. End to End Deep Learning Project
  • 1. What is Neuron
  • 2. Multi-Layer Perceptron
  • 3. Shallow vs Deep Neural Networks
  • 4. Activation Function
  • 5. What is Back Propagation
  • 6. Optimizers in Deep Learning
  • 7. Steps to Build Neural Network
  • 8. Customer Churn Dataset Loading
  • 9. Data Visualization Part 1
  • 10. Data Visualization Part 2
  • 11. Data Preprocessing
  • 12. Import Neural Networks APIs
  • 13. How to Get Input Shape and Class Weights
  • 14. Neural Network Model Building
  • 15. Model Summary Explanation
  • 16. Model Training
  • 17. Model Evaluation
  • 18. Model Save and Load
  • 19. Prediction on Real-Life Data

  • 6. Introduction to Computer Vision with Deep Learning
  • 1. Introduction to Computer Vision with Deep Learning
  • 2. 5 Steps of Computer Vision Model Building
  • 3. Fashion MNIST Dataset Download
  • 4. Fashion MNIST Dataset Analysis
  • 5. Train Test Split for Data
  • 6. Deep Neural Network Model Building
  • 7. Model Summary and Training
  • 8. Discovering Overfitting - Early Stopping
  • 9. Model Save and Load for Prediction

  • 7. Introduction to Convolutional Neural Networks [Theory and Intuitions]
  • 1. What is Convolutional Neural Network
  • 2. Working Principle of CNN
  • 3. Convolutional Filters
  • 4. Feature Maps
  • 5. Padding and Strides
  • 6. Pooling Layers
  • 7. Activation Function
  • 8. Dropout
  • 9. CNN Architectures Comparison
  • 10. LeNet-5 Architecture Explained
  • 11. AlexNet Architecture Explained
  • 12. GoogLeNet (Inception V1) Architecture Explained
  • 13. RestNet Architecture Explained
  • 14. MobileNet Architecture Explained
  • 15. EfficientNet Architecture Explained

  • 8. Horses vs Humans Classification with Simple CNN
  • 1. Overview of Image Classification using CNNs
  • 2. Introduction to TensorFlow Datasets (TFDS)
  • 3. Download Humans or Horses Dataset Part 1
  • 4. Download Humans or Horses Dataset Part 2
  • 5. Use of Image Data Generator
  • 6. Data Display in Subplots Matrix
  • 7. CNN Introduction
  • 8. Building CNN Model
  • 9. CNN Parameter Calculation
  • 10. CNN Parameter Calculations Part 2
  • 11. CNN Parameter Calculations Part 3
  • 12. Model Training
  • 13. Model Load and Save
  • 14. Image Class Prediction

  • 9. Building Cats and Dogs Classifier with Regularized CNN
  • 1. What is Overfitting
  • 2. L1, L2 and Early Stopping Regularization
  • 3. How Dropout and Batch Normalization Prevents Overfitting
  • 4. What is Data Augmentation [Theory]
  • 5. Sample Data Load with ImageDataGenerator for Augmentation
  • 6. Random Rotation Augmentation
  • 7. Random Shift Augmentation
  • 8. Other Types of Data Augmentation
  • 9. All Types of Augmentation at Once
  • 10. TensorFlow TFDS and Cats vs Dogs Data Download
  • 11. Store Data in Local Directory
  • 12. Load Dataset for Baseline Classifier
  • 13. Building Baseline CNN Classifier
  • 14. How to Calculate Size of Output Layers of CNN and MaxPool
  • 15. How to Calculate Number of Parameters in CNN and FCN
  • 16. Model Training and Layers Analysis
  • 17. Model Training and Validation Accuracy Plot
  • 18. Building Dataset for Regularized CNN
  • 19. Regularized CNN Model Building and Training
  • 20. Training Log Analysis
  • 21. Load Model and Do the Prediction
  • 22. CNN Model Visualization

  • 10. Flowers Classification with Transfer Learning and CNN
  • 1. Transfer Learning Introduction
  • 2. Load Flowers Dataset for Classification
  • 3. Download Flowers Data
  • 4. Flowers Data Visualization
  • 5. Preparing Data with Image Data Generator
  • 6. Baseline CNN Model Building
  • 7. How to Calculate Number of Parameters in CNN
  • 8. Baseline CNN Model Training
  • 9. Train Model with TFDS Data Without Saving Locally Part 1
  • 10. Train Model with TFDS Data Without Saving Locally Part 2
  • 11. import VGG16 from Keras
  • 12. Data Augmentation for Training
  • 13. Make CNN Model with VGG16 Transfer Learning
  • 14. Model Training for Better Accuracy
  • 15. Train Any Model for Transfer Learning
  • 16. Save and Load Model with Class Names
  • 17. Online Prediction of Flowers Classes

  • 11. Introduction to NLP
  • 1. Introduction to NLP
  • 2. What are Key NLP Techniques
  • 3. Overview of NLP Tools
  • 4. Common Challenges in NLP
  • 5. Bag of Words - The Simples Word Embedding Technique
  • 6. Term Frequency - Inverse Document Frequency (TF-IDF)
  • 7. Load Spam Dataset
  • 8. Text Preprocessing
  • 9. Feature Engineering
  • 10. Pair Plot
  • 11. Train Test Split
  • 12. TF-IDF Vectorization
  • 13. Model Evaluation and Prediction on Real Data
  • 14. Model Load and Store
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 17201
    حجم: 7101 مگابایت
    مدت زمان: 1025 دقیقه
    تاریخ انتشار: 12 مرداد 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید