وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Data Science & Machine Learning: Zero to Hero

سرفصل های دوره

Master Data Science & Machine Learning in Python: Numpy, Pandas, Matplotlib, Scikit-Learn, Machine Learning, and more!


1. Introduction
  • 1. Welcome to the Python for Data Science & ML bootcamp!
  • 2. Python A Brief Overview
  • 3. The Python Installation Procedure
  • 4. What Jupyter is
  • 5. Set up Anaconda on Different Operating Systems
  • 6. How to integrate Python into Jupyter
  • 7. Handling Directories in Jupyter Notebook
  • 8. Input & Output
  • 9. Working with different datatypes
  • 10. Variables
  • 11. Arithmetic Operators
  • 12. Comparison Operators
  • 13. Logical Operators
  • 14. Conditional statements
  • 15. Loops
  • 16. Sequences Part 1 Lists
  • 17. Sequences Part 2 Dictionaries
  • 18. Sequences Part 3 Tuples
  • 19. Functions Part 1 Built-in Functions
  • 20. Functions Part 2 User-defined Functions

  • 2. The Must-Have Python Data Science Libraries
  • 1. Completing Library Setup
  • 2. Library Importing
  • 3. Pandas A Data Science Library
  • 4. NumPy A Data Science Library
  • 5. NumPy vs. Pandas
  • 6. Matplotlib Library for Data Science
  • 7. Seaborn Library for Data Science

  • 3. NumPy Mastery Everything you need to know about NumPy
  • 1. Intro to NumPy arrays
  • 2. Creating NumPy arrays
  • 3. Indexing NumPy arrays
  • 4. Array shape
  • 5. Iterating Over NumPy Arrays
  • 6. Basic NumPy arrays zeros()
  • 7. Basic NumPy arrays ones()
  • 8. Basic NumPy arrays full()
  • 9. Adding a scalar
  • 10. Subtracting a scalar
  • 11. Multiplying by a scalar
  • 12. Dividing by a scalar
  • 13. Raise to a power
  • 14. Transpose
  • 15. Element-wise addition
  • 16. Element-wise subtraction
  • 17. Element-wise multiplication
  • 18. Element-wise division
  • 19. Matrix multiplication
  • 20. Statistics

  • 4. DataFrames and Series in Python's Pandas
  • 1. What is a Python Pandas DataFrame
  • 2. What is a Python Pandas Series
  • 3. DataFrame vs Series
  • 4. Creating a DataFrame using lists
  • 5. Creating a DataFrame using a dictionary
  • 6. Loading CSV data into python
  • 7. Changing the Index Column
  • 8. Inplace
  • 9. Examining the DataFrame Head & Tail
  • 10. Statistical summary of the DataFrame
  • 11. Slicing rows using bracket operators
  • 12. Indexing columns using bracket operators
  • 13. Boolean list
  • 14. Filtering Rows
  • 15. Filtering rows using & and operators
  • 16. Filtering data using loc()
  • 17. Filtering data using iloc()
  • 18. Adding and deleting rows and columns
  • 19. Sorting Values
  • 20. Exporting and saving pandas DataFrames
  • 21. Concatenating DataFrames
  • 22. groupby()

  • 5. Data Cleaning Techniques for Better Data
  • 1. Introduction to Data Cleaning
  • 2. Quality of Data
  • 3. Examples of Anomalies
  • 4. Median-based Anomaly Detection
  • 5. Mean-based anomaly detection
  • 6. Z-score-based Anomaly Detection
  • 7. Interquartile Range for Anomaly Detection
  • 8. Dealing with missing values
  • 9. Regular Expressions
  • 10. Feature Scaling

  • 6. Exploratory Data Analysis in Python
  • 1. Introduction
  • 2. What is Exploratory Data Analysis
  • 3. Univariate Analysis
  • 4. Univariate Analysis Continuous Data
  • 5. Univariate Analysis Categorical Data
  • 6. Bivariate analysis Continuous & Continuous
  • 7. Bivariate analysis Categorical & Categorical
  • 8. Bivariate analysis Continuous & Categorical
  • 9. Detecting Outliers
  • 10. Categorical Variable Transformation

  • 7. Python for Time-Series Analysis A Primer
  • 1. Introduction to Time Series
  • 2. Getting stock data using yfinance
  • 3. Converting a Dataset into Time Series
  • 4. Working with Time Series
  • 5. Time Series Data Visualization with Python

  • 8. Python for Data Visualization Library Resources, and Sample Graphs
  • 1. Introduction
  • 2. Setting Up Matplotlib
  • 3. Plotting Line Plots using Matplotlib
  • 4. Title, Labels & Legend
  • 5. Plotting Histograms
  • 6. Plotting Bar Charts
  • 7. Plotting Pie Charts
  • 8. Plotting Scatter Plots
  • 9. Plotting Log Plots
  • 10. Plotting Polar Plots
  • 11. Handling Dates
  • 12. Creating multiple subplots in one figure

  • 9. The Basics of Machine Learning
  • 1. Why do we need machine learning
  • 2. Machine Learning Use Cases
  • 3. Approaches to Machine Learning
  • 4. What is Supervised learning
  • 5. What is Unsupervised learning
  • 6. Supervised learning vs Unsupervised learning

  • 10. Simple Linear Regression with Python
  • 1. Introduction to regression
  • 2. How Does Linear Regression Work
  • 3. Line representation
  • 4. Implementation in python Importing libraries & datasets
  • 5. Implementation in python Distribution of the data
  • 6. Implementation in python Creating a linear regression object

  • 11. Multiple Linear Regression with Python
  • 1. Understanding Multiple linear regression
  • 2. Exploring the dataset
  • 3. Encoding Categorical Data
  • 4. Splitting data into Train and Test Sets
  • 5. Training the model on the Training set
  • 6. Predicting the Test Set results
  • 7. Evaluating the performance of the regression model
  • 8. Root Mean Squared Error in Python

  • 12. Classification Algorithms K-Nearest Neighbors
  • 1. Introduction to classification
  • 2. K-Nearest Neighbors algorithm
  • 3. Example of KNN
  • 4. K-Nearest Neighbours (KNN) using python
  • 5. Importing required libraries
  • 6. Importing the dataset
  • 7. Splitting data into Train and Test Sets
  • 8. Feature Scaling
  • 9. Importing the KNN classifier
  • 10. Results prediction & Confusion matrix

  • 13. Classification Algorithms Decision Tree
  • 1. Introduction to decision trees
  • 2. What is Entropy
  • 3. Exploring the dataset
  • 4. Decision tree structure
  • 5. Importing libraries & datasets
  • 6. Encoding Categorical Data
  • 7. Splitting data into Train and Test Sets
  • 8. Results Prediction & Accuracy

  • 14. Classification Algorithms Logistic regression
  • 1. Introduction
  • 2. Implementation steps
  • 3. Importing libraries & datasets
  • 4. Splitting data into Train and Test Sets
  • 5. Pre-processing
  • 6. Training the model
  • 7. Results prediction & Confusion matrix
  • 8. Logistic Regression vs Linear Regression

  • 15. Clustering
  • 1. Introduction to clustering
  • 2. Use cases
  • 3. K-Means Clustering Algorithm
  • 4. Elbow method
  • 5. Steps of the Elbow method
  • 6. Implementation in python
  • 7. Hierarchical clustering
  • 8. Density-based clustering
  • 9. Implementation of k-means clustering in python
  • 10. Importing the dataset
  • 11. Visualizing the dataset
  • 12. Defining the classifier
  • 13. 3D Visualization of the clusters
  • 14. 3D Visualization of the predicted values
  • 15. Number of predicted clusters

  • 16. Recommender System
  • 1. Introduction
  • 2. Collaborative Filtering in Recommender Systems
  • 3. Content-based Recommender System
  • 4. Importing libraries & datasets
  • 5. Merging datasets into one dataframe
  • 6. Sorting by title and rating
  • 7. Histogram showing number of ratings
  • 8. Frequency distribution
  • 9. Jointplot of the ratings and number of ratings
  • 10. Data pre-processing
  • 11. Sorting the most-rated movies
  • 12. Grabbing the ratings for two movies
  • 13. Correlation between the most-rated movies
  • 14. Sorting the data by correlation
  • 15. Filtering out movies
  • 16. Sorting values
  • 17. Repeating the process for another movie

  • 17. Conclusion
  • 1. Conclusion
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 1317
    حجم: 2017 مگابایت
    مدت زمان: 361 دقیقه
    تاریخ انتشار: 26 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید