وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python Data Analyst: 25 Days for A-Z Data Analysis in Python

سرفصل های دوره

Master Python for A-Z Data Analysis and Become Pro Data Analyst with Basics to Hands-on Coding Exercises and Assignments


1 - Start Here MUST Follow the Instructions
  • 1 - Instructions to accomplish the course.html
  • 2 - Python cheatsheet for data analysis.html
  • 2 - python-data-analysis-sheet.zip
  • 3 - Resources.zip
  • 3 - Resources used in the course.html

  • 2 - Data Analysis and Its Application
  • 4 - 1.Un-DA.pdf
  • 4 - Understanding analyzing data
  • 5 - 4.Application-DA.pdf
  • 5 - Realworld application of data analysis

  • 3 - Data Analysis Tools Techniques and Methods
  • 6 - 9.Methods-of-DC.pdf
  • 6 - Various aspects of data cleaning
  • 7 - 20.Joining.pdf
  • 7 - Various aspects of Joining datasets
  • 8 - Methods of exploratory data analysis Part 1
  • 9 - Methods of exploratory data analysis Part 2
  • 10 - 12.13.14.Methods-of-EDA.pdf
  • 10 - Methods of exploratory data analysis Part 3

  • 4 - Statistical Analysis Methods and Techniques
  • 11 - 6.Sampling-methods.pdf
  • 11 - Population vs sample and its methods
  • 12 - 23.Types-of-Statistics.pdf
  • 12 - Types of statistical data analysis
  • 13 - A Recap on descriptive statistics methods
  • 14 - Inferential statistics Part 1 Ttests and ANOVA
  • 15 - 25.26.27.methods-of-ds-and-is.pdf
  • 15 - Inferential statistics Part 2 Relationships measures
  • 16 - 28.Lin-reg.pdf
  • 16 - Inferential statistics Part 3 Linear regression

  • 5 - Clarifying the Concept of Hypothesis Testing
  • 17 - 36.Hypothesis-Testing.pdf
  • 17 - Hypothesis testing for inferential statistics
  • 18 - 37.Selecting-Appropriate-Statistical-Test.pdf
  • 18 - Selecting statistical test and assumption testing
  • 19 - 38.CSP.pdf
  • 19 - Confidence level significance level pvalue
  • 20 - 39.Making-Decision-and-Conclusion.pdf
  • 20 - Making decision and conclusion on findings
  • 21 - 40.Example-HT.pdf
  • 21 - AZ statistical analysis and hypothesis testing

  • 6 - Data Transformation and Visualisation Methods
  • 22 - Techniques for data transformation Part 1
  • 23 - 17.18.Mthods-of-DTP.pdf
  • 23 - Techniques for data transformation Part 2
  • 24 - Several methods of data visualization Part 1
  • 25 - Several methods of data visualization Part 2
  • 26 - 45.46.47.Data-Visualization-Methods.pdf
  • 26 - Several methods of data visualization Part 3

  • 7 - Data Modeling with Machine Learning Model
  • 27 - 41.ML-in-Data-Analysis.pdf
  • 27 - Importance of ML in data analytics
  • 28 - 42.Types-of-Machine-Learning.pdf
  • 28 - Widely used machine learning models
  • 29 - 43.steps-in-ML.pdf
  • 29 - Steps in developing machine learning model

  • 8 - Setting Up Python and Jupyter Notebook
  • 30 - Installing Python and Jupyter Notebook Mac.html
  • 30 - Mac.pdf
  • 31 - Installing Python and Jupyter Notebook Windows.html
  • 31 - Windows.pdf
  • 32 - More alternative methods Check the article.html

  • 9 - Starting with Variables to Data Types
  • 33 - Getting started with first python code
  • 34 - Assigning variable names correctly
  • 35 - Various data types and data structures
  • 36 - Converting and casting data types
  • 37 - Starting with Variables to Data Types.html
  • 37 - starting-with-variables-to-data-types.zip

  • 10 - Various Operators in Python Programming
  • 38 - Arithmetic operators
  • 39 - Comparison operators
  • 40 - Logical operators and or not
  • 41 - Operators in Python Programming.html
  • 41 - operators-in-python-programming.zip

  • 11 - Dealing with Data Structures
  • 42 - Lists creation indexing slicing modifying
  • 43 - Sets unique elements operations
  • 44 - Dictionaries keyvalue pairs methods
  • 45 - Several data structures.html
  • 45 - dealing-with-data-structures.zip

  • 12 - Conditionals Looping and Functions
  • 46 - Conditional statements if elif else
  • 47 - Nested logical expressions in conditions
  • 48 - Looping structures for loops while loops
  • 49 - Defining creating and calling functions
  • 50 - Conditions loops and functions.html
  • 50 - conditionals-looping-and-functions.zip

  • 13 - Sequential Cleaning and Modifying Data
  • 51 - 1.loading-data.pdf
  • 51 - Preparing notebook and loading data
  • 52 - 2.identify-missing-values.pdf
  • 52 - Identifying missing or null values
  • 53 - 3.imputing-missing-values.pdf
  • 53 - Method of missing value imputation
  • 54 - 4.checking-data-types.pdf
  • 54 - Exploring data types in a dataframe
  • 55 - 5.removing-inconsistent-value.pdf
  • 55 - Dealing with inconsistent values
  • 56 - 6.assigning-data-type.pdf
  • 56 - Assigning correct data types
  • 57 - 7.dealing-with-duplicates.pdf
  • 57 - Dealing with duplicated values
  • 58 - Sequential data cleaning and modifying.html
  • 58 - data-loading-and-cleaning.zip

  • 14 - Various Aspects of Data Manipulation
  • 59 - 8.sorting-data.pdf
  • 59 - Sorting data by column and order
  • 60 - 9.boolean-filtering.pdf
  • 60 - Filtering data with boolean indexing
  • 61 - 10.query.pdf
  • 61 - Query method for precise filtering
  • 62 - 11.is-in.pdf
  • 62 - Filtering data with isin method
  • 63 - 12.loc-and-iloc.pdf
  • 63 - Slicing dataframe with loc and iloc
  • 64 - 13.combining-conditions.pdf
  • 64 - Filtering data for many conditions
  • 65 - Various aspects of data manipulation.html
  • 65 - data-sorting-and-filtering.zip

  • 15 - Merging and Concatenating Dataframes
  • 66 - 14.joining-data.pdf
  • 66 - Joining dataframes horizontally
  • 67 - 15.concatenating-data.pdf
  • 67 - Concatenate dataframes vertically
  • 68 - Merging and concatenating dataframes.html
  • 68 - merging-and-joining-dataframes.zip

  • 16 - Applied Exploratory Data Analysis Methods
  • 69 - 16.value-counts.pdf
  • 69 - Frequency and percentage analysis
  • 70 - 17.descriptive.pdf
  • 70 - Descriptive statistics and analysis
  • 71 - 18.group-by.pdf
  • 71 - Group by data analysis method
  • 72 - 19.pivot-table.pdf
  • 72 - Pivot table analysis all in one
  • 73 - 20.crosstab.pdf
  • 73 - Crosstabulation analysis method
  • 74 - 21.correl.pdf
  • 74 - Correlation analysis for numeric data
  • 75 - Applied exploratory data analysis.html
  • 75 - applied-exploratory-data-analysis.zip

  • 17 - Exploring Data Visualisations Methods
  • 76 - 22.methods-used-in-visualisation.pdf
  • 76 - Understanding visualisation tools
  • 77 - 23.bar-chart.pdf
  • 77 - Getting started with bar charts
  • 78 - 24.stacked-or-clustered.pdf
  • 78 - Stacked and clustered bar charts
  • 79 - 25.pie-chart.pdf
  • 79 - Pie chart for percentage analysis
  • 80 - 26.line-plot.pdf
  • 80 - Line chart for grouping data analysis
  • 81 - 27.histogram.pdf
  • 81 - Exploring distribution with histogram
  • 82 - 28.scatterplot.pdf
  • 82 - Correlation analysis via scatterplot
  • 83 - 29.heatmap.pdf
  • 83 - Matrix visualisation with heatmap
  • 84 - 30.boxplot.pdf
  • 84 - Boxplot statistical visualisation method
  • 85 - Exploring data visualisations methods.html
  • 85 - data-visualisations.zip

  • 18 - Several Data Transformation Methods
  • 86 - 31.check-distribution.pdf
  • 86 - Investigating distribution of numeric data
  • 87 - 32.normality-test.pdf
  • 87 - Shapiro Wilk test of normality
  • 88 - 33.square-root-transformation.pdf
  • 88 - Starting with square root transformation
  • 89 - 34.log-transformation.pdf
  • 89 - Logarithmic transformation method
  • 90 - 35.boxcox-transformation.pdf
  • 90 - Boxcox power transformation method
  • 91 - 36.yeojohnson-transformation.pdf
  • 91 - YeoJohnson power transformation method
  • 92 - Practical data transformation methods.html
  • 92 - transformation-methods.zip

  • 19 - Statistical Tests and Hypothesis Testing
  • 93 - 37.one-sample-ttest.pdf
  • 93 - One sample ttest
  • 94 - 38.independent-sample-t-test.pdf
  • 94 - Independent sample ttest
  • 95 - 39.one-way-anova.pdf
  • 95 - One way Analysis of Variance
  • 96 - 40.chi-test-for-ind.pdf
  • 96 - Chi square test for independence
  • 97 - 41.pearson-correlation.pdf
  • 97 - Pearson correlation analysis
  • 98 - 42.linear-regression.pdf
  • 98 - Linear regression analysis
  • 99 - Statistical tests and hypothesis testing.html
  • 99 - statistical-tests-and-hypothesis-testing.zip

  • 20 - Exploring Feature Engineering Methods
  • 100 - 43.feature-generation.pdf
  • 100 - Generating new features
  • 101 - 44.datetime-data.pdf
  • 101 - Extracting day month and year
  • 102 - 45.feature-encoding.pdf
  • 102 - Encoding features LabelEncoder
  • 103 - 46.feature-binning.pdf
  • 103 - Categorizing numeric feature
  • 104 - 46.feature-mapping.pdf
  • 104 - Manual feature encoding
  • 105 - 47.creating-dummies.pdf
  • 105 - Converting features into dummy
  • 106 - Feature engineering methods.html
  • 106 - feature-engineering-methods.zip

  • 21 - Data Preprocessing for Machine Learning
  • 107 - 48.selecting-features.pdf
  • 107 - Selecting features and target
  • 108 - 49.standard-scaling.pdf
  • 108 - Scaling features StandardScaler
  • 109 - 50.minmax-scaler.pdf
  • 109 - Scaling features MinMaxScaler
  • 110 - 51.PCA.pdf
  • 110 - Dimensionality reduction with PCA
  • 111 - 52.train-test-split.pdf
  • 111 - Splitting into train and test set
  • 112 - Preprocessing for machine learning.html
  • 112 - preprocessing-for-machine-learning.zip

  • 22 - Predictive Analytics Regression Machine Learning
  • 113 - 1.LR-model-ML.pdf
  • 113 - Linear regression machine learning
  • 114 - 2.DTR-model-ML.pdf
  • 114 - Decision tree regressor machine learning
  • 115 - 3.RFR-model-ML.pdf
  • 115 - Random forest regressor machine learning
  • 116 - Regression machine learning.html
  • 116 - regression-machine-learning.zip

  • 23 - Predictive Analytics Classification Machine Learning
  • 117 - 4.LGR-model-ML.pdf
  • 117 - Logistic regression machine learning
  • 118 - 5.DTC-model-ML.pdf
  • 118 - Decision tree classification machine learning
  • 119 - 6.RFC-model-ML.pdf
  • 119 - Random forest classification machine learning
  • 120 - Classification machine learning.html
  • 120 - classification-machine-learning.zip

  • 24 - Data Segmentation with KMeans Clustering
  • 121 - Calculating within cluster sum of squares
  • 122 - 7.selecting-best-k.pdf
  • 122 - Selecting optimal number of clusters
  • 123 - 8.developing-k-means.pdf
  • 123 - Application of KMeans machine learning
  • 124 - Data segmentation with KMeans clustering.html
  • 124 - data-segmentation-with-kmeans-clustering.zip

  • 25 - Final Project Sports Data Analytics
    139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38753
    حجم: 4371 مگابایت
    مدت زمان: 867 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید