وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Preparing Data for Feature Engineering and Machine Learning in Microsoft Azure

سرفصل های دوره

In this course, you'll learn how to prepare, clean up, and engineer new features from the data with Azure Machine Learning, so the dataset can be represented in a form that's easy for the learning algorithm to learn the patterns.


1. Course Overview
  • 1. Course Overview

  • 2. Getting Started with Azure Machine Learning
  • 1. Introduction
  • 2. What Is Machine Learning
  • 3. Introduction to Azure Machine Learning
  • 4. Azure Machine Learning Experiment Workflow
  • 5. Prerequisites
  • 6. Demo - Creating an Azure Machine Learning Studio Workspace
  • 7. Demo - Creating an Azure Machine Learning Service Workspace
  • 8. Demo - Exploring the Dataset
  • 9. Summary

  • 3. Differentiating Data, Features, Targets, and Models
  • 1. Introduction
  • 2. Moving from Raw Data to Features
  • 3. 6 Characteristics of a Good Feature
  • 4. Define Target for ML Problems
  • 5. Demo - Exploring Datasets for Different Problems
  • 6. How Algorithms Learn Models
  • 7. Demo - Modifying the Metadata of Datasets
  • 8. Summary

  • 4. Preparing Input Data for Machine Learning Models
  • 01. Introduction
  • 02. Data Preprocessing Methods
  • 03. Demo - Exploratory Data Analysis
  • 04. Demo - Data Cleaning (Erroneous Data)
  • 05. Demo - Data Cleaning (Outliers)
  • 06. Demo - Data Cleaning (Duplicate Rows)
  • 07. Demo - Data Transformation
  • 08. Demo - Reducing Data (Record Sampling)
  • 09. Demo - Reducing Data (Attribute Sampling)
  • 10. Demo - Discretizing Data
  • 11. Entropy-based Discretization
  • 12. Demo - Entropy-based Discretization
  • 13. Summary

  • 5. Handling Missing Data
  • 01. Introduction
  • 02. Reasons Why Data Is Missing
  • 03. Demo - Listwise Deletion
  • 04. Problems in Deleting Rows
  • 05. Demo - Using Indicator Variables
  • 06. Replace with Mean, Median, and Mode
  • 07. Disadvantages of Single Imputation Methods
  • 08. Demo - Replace with MICE
  • 09. How MICE Works
  • 10. Summary

  • 6. Role of Feature Engineering in Machine Learning
  • 1. Introduction
  • 2. Why Feature Engineering
  • 3. Role of Feature Engineering in Model Complexity
  • 4. Build Better Models with Feature Engineering
  • 5. Feature Engineering Numeric Variables
  • 6. Feature Engineering Categorical Variables
  • 7. Demo - One-hot Encoding Categorical Variables
  • 8. Demo - Learning with Counts Categorical Variables
  • 9. Summary

  • 7. Split a Data Set into Training and Testing Subsets
  • 1. Introduction
  • 2. Demo - Training and Testing on Same Data
  • 3. Demo - Split Data into Training and Test Set
  • 4. Splitting Data for Model Tuning
  • 5. Demo - Cross-validation
  • 6. Demo - Model Selection
  • 7. Leave-one-out Cross Validation
  • 8. Summary

  • 8. Identify Data-level Issues In Machine Learning Models
  • 1. Introduction
  • 2. Imbalanced Dataset for Classification Problems
  • 3. Demo - SMOTE
  • 4. Data Scale Issues in Distance-based Models
  • 5. Multicollinearity Problem in Regression Models
  • 6. Outliers in Regression Models
  • 7. Problem with High-dimensional Datasets
  • 8. Summary
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 2446
    حجم: 309 مگابایت
    مدت زمان: 140 دقیقه
    تاریخ انتشار: 28 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید