وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Payment Risk and Payment Fraud: Data Science and Analytics

سرفصل های دوره

we will learn modeling and coding (SQL/Python) knowledge for data science and data analytics in payment risk


1. Introduction
  • 1. Introduction
  • 2. Course Outline

  • 2. Payment
  • 1.1 Payment Overview v5.pptx
  • 1. Payment Overview
  • 2.1 Payment -- Card V5.pptx
  • 2. Card Transactions
  • 3.1 Payment -- ACH v3.pptx
  • 3. ACH Transactions
  • 4.1 Payment -- Chargeback and Refund v2 (1).pptx
  • 4. Chargeback and Refund

  • 3. Payment Risk
  • 1.1 Payment Risk v3.pptx
  • 1. Payment Risk Overview
  • 2.1 Consumer Risk - ATO v3.pptx
  • 2. ATO Introduction
  • 3.1 How to identify ATO v3.pptx
  • 3. How to identify ATO
  • 4.1 Consumer Risk - SF&NSF v3.pptx
  • 4. Stolen Financial and NSF overview
  • 5.1 How to identify SF and NSF v3.pptx
  • 5. How to identify SF and NSF
  • 6.1 Family Fraud 101.pptx
  • 6. Family Fraud Overview
  • 7.1 How to identify Family Fraud.pptx
  • 7. How to identify Family Fraud
  • 8.1 Merchant Risk Overview v3.pptx
  • 8. Merchant Risk Introduction
  • 9.1 How to identify merchant risk v3.pptx
  • 9. How to identify merchant risk

  • 4. Statistic and ML
  • 1.1 Stats Outline.pptx
  • 1. Stats outline
  • 2.1 Hypothesis.pptx
  • 2. Hypothesis
  • 3.1 Sampling.pptx
  • 3. Sampling
  • 4.1 How to calculate sample size.pptx
  • 4. Sample Size Calculation
  • 5. Confusion Metrix
  • 6.1 ML 101.pptx
  • 6. ML Basic
  • 7.1 Linear Regression 101.pptx
  • 7. Linear Regression 101
  • 8.1 Linear Regression 102.pptx
  • 8. Linear Regression 102
  • 9.1 Linear Regression 103.pptx
  • 9. Linear Regression 103
  • 10.1 Linear Regression 104.pptx
  • 10.2 Linear Regression.xlsx
  • 10. Linear Regression 104
  • 11.1 Logistic Regression 101.pptx
  • 11. Logistic Regression 101
  • 12.1 Logistic Regression 102.pptx
  • 12. Logistic Regression 102
  • 13.1 Decision Tree 101.pptx
  • 13. Decision Tree 101
  • 14.1 Decision Tree 102.pptx
  • 14. Decision Tree 102
  • 15.1 Random Forest 101.pptx
  • 15. Random Forest 101
  • 16.1 Random Forest 102.pptx
  • 16. Random Forest 102
  • 17.1 Gradient Boosting 101.pptx
  • 17. GBDT 101
  • 18.1 Gradient boosting 102.pptx
  • 18. GBDT 102
  • 19.1 xgboost 101.pptx
  • 19. Xgboost 101
  • 20.1 Xgboost 102.pptx
  • 20. Xgboost 102
  • 21.1 Model Testing and Validation.pptx
  • 21. Model testing and evaluation

  • 5. SQL
  • 1. How to run SQL in this class
  • 2.1 Section 3 SQL Example.xlsx
  • 2. where our sql examples are and how to play with them
  • 3.1 SQL - Select.pptx
  • 3. Select
  • 4.1 SQL - Select distinct.pptx
  • 4. Select distinct
  • 5.1 SQL - Where Clause.pptx
  • 5. where clause
  • 6.1 SQL - Group By.pptx
  • 6. group by
  • 7.1 SQL - Aggregate Functions.pptx
  • 7. aggregate function
  • 8.1 SQL - Max Min Function.pptx
  • 8. Maxmin function
  • 9.1 SQL - Having Clause.pptx
  • 9. Having Clause
  • 10.1 SQL - Join Clause.pptx
  • 10. Join
  • 11.1 SQL - In Operator.pptx
  • 11. In operator
  • 12.1 SQL - Not Equal Operator.pptx
  • 12. Not equal operator
  • 13.1 SQL - Date Function.pptx
  • 13. date function
  • 14.1 SQL - case statement.pptx
  • 14. case when statement
  • 15.1 SQL - Cast.pptx
  • 15. cast function
  • 16.1 SQL - Limit and Offset Clause.pptx
  • 16. Limit and offset function
  • 17.1 SQL - Window Functions.pptx
  • 17. window function
  • 18.1 SQL - Subqueries.pptx
  • 18. Subquery
  • 19.1 SQL - Complex Join.pptx
  • 19. Complex Join
  • 20.1 SQL - Join and aggregate functions.pptx
  • 20. Join and aggregate functions
  • 21.1 SQL - combine having and where.pptx
  • 21. combine having and where
  • 22.1 SQL - Duplicates.pptx
  • 22. Duplicates
  • 23.1 SQL - nth.pptx
  • 23. Nth number
  • 24.1 SQL - Previous Date Record.pptx
  • 24. Previous Daterecord
  • 25.1 SQL - Query Efficiency.pptx
  • 25. Query Efficiency

  • 6. Python
  • 1.1 Python input, output and import.pptx
  • 1.2 Python.xlsx
  • 1. Python input and output
  • 2.1 Python Statement, Indentation and Comments.pptx
  • 2. Python Statement, Indentation and Comments
  • 3.1 Python Data Type.pptx
  • 3. Python Data type
  • 4.1 Python Function.pptx
  • 4. Python functions
  • 5.1 Python Operators.pptx
  • 5. Python operator
  • 6.1 Python if..else.pptx
  • 6. Python if else
  • 7.1 Python for loop.pptx
  • 7. Python for loop
  • 8.1 Python while loop.pptx
  • 8. Python while loop
  • 9.1 Python List 101.pptx
  • 9. Python List 101
  • 10.1 Python List 201.pptx
  • 10. Python List 102
  • 11.1 Python tuple 101.pptx
  • 11. Python Tuple 101
  • 12.1 Python Tuple 201.pptx
  • 12. Python Tuple 102
  • 13.1 Python Set 101.pptx
  • 13. Python Set 101
  • 14.1 Python Set 201.pptx
  • 14. Python Set 102
  • 15.1 Python dictionary 101.pptx
  • 15. Python Dictionary 101
  • 16.1 Python Dictionary 201.pptx
  • 16. Python Dictionary 102
  • 17.1 Python numpy 101.pptx
  • 17. Python numpy 101
  • 18.1 Python numpy 201.pptx
  • 18. Python numpy 102
  • 19.1 Python numpy 301.pptx
  • 19. Python numpy 103
  • 20.1 Python numpy 401.pptx
  • 20. Python numpy 104
  • 21.1 Python Pandas 101.pptx
  • 21. Python Pandas 101
  • 22.1 Python numpy 201.pptx
  • 22. Python Pandas 102
  • 23.1 Python Pandas 301.pptx
  • 23. Python Pandas 103
  • 24.1 Python Pandas 401.pptx
  • 24. Python Pandas 104
  • 25.1 Python Pandas 501.pptx
  • 25. Python Pandas 105
  • 26.1 Python Matplotlib 101.pptx
  • 26. Python matplotlib 101
  • 27.1 Python Matplotlib 201.pptx
  • 27. Python matplotlib 102
  • 28.1 Python scikit-learn 101.pptx
  • 28. Python scikit-learn 101

  • 7. Case study
  • 1.1 First Case Overview.pptx
  • 1.2 Nashville housing house details.xlsx
  • 1.3 Nashville housing sale.xlsx
  • 1.4 Nashville housing seller info.xlsx
  • 1. First Case Study Nashville Housing Overview
  • 2.1 Nashville housing thinking process.pptx
  • 2. Thinking process
  • 3.1 Nashville housing overall trend.pptx
  • 3. Nashville Housing Overall Trend
  • 4.1 Nashville Housing Analysis.xlsx
  • 4.2 Nashville housing details.pptx
  • 4. Nashville Housing analysis
  • 5.1 Nashville housing summary.pptx
  • 5. Nashville Housing Summary
  • 6.1 Second Case Overview.pptx
  • 6.2 Section 6 Subscription Details Python - customer info.csv
  • 6. Second Case Study Subscription business model analysis
  • 7.1 Second Case Overall Business Performance.pptx
  • 7.2 subscription business analysis revenue.xlsx
  • 7. Overall business performance
  • 8.1 Second Case Dataframe Analysis.pptx
  • 8.2 Section 6 Subscription Details Python.xlsx
  • 8.3 subscription data analysis.zip
  • 8. Load Subscription business data into dataframe
  • 9.1 Second Case Decision Tree.pptx
  • 9.2 subscription data decision tree model.zip
  • 9. Build a decision tree model in Python to improve business performance

  • 8. Congratulations
  • 1.1 payment risk ds congratulations.pptx
  • 1. Congratulations!
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 22717
    حجم: 6088 مگابایت
    مدت زمان: 524 دقیقه
    تاریخ انتشار: ۹ آبان ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید