وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

No-code AI applications with ChatGPT, OpenAI, Flowise & LLMs

سرفصل های دوره

Develop ChatGPT and LLM applications without programming skills using ChatGPT, Flowise, LangChain, Llama, Pinecone...


1. Introduction to Language Models
  • 1. Introduction to Language Models
  • 2. What are Language Models
  • 3. Types of Language Models

  • 2. Introduction to ChatGPT
  • 1. OpenAI, the company behind the ChatGPT algorithm
  • 2. Introduction to ChatGPT
  • 3. Advantages of ChatGPT and difference with conventional ChatBots
  • 4. Limitations of ChatGPT

  • 3. Tools for LLM and NLP
  • 1. Tools for working with LLMs and NLPs
  • 2. Open AI API
  • 3. Hands-on Lab OpenAI API
  • 4. Hugging Face Fundamentals
  • 5. LangChain Fundamentals
  • 6. Open-source LLM models

  • 4. AI Application Development with ChatGPT with LangChain
  • 1. Introduction to LangChain
  • 2. Different LangChain model types and requirements
  • 3. LLM input management with LangChains Prompts Module
  • 4. Combination of LLM with other components through chains
  • 5. Providing access to external data through LangChain Indexes
  • 6. Giving ChatGPT the ability to memorize through the LangChain Memory
  • 7. Providing access to tools through LangChains Agents module

  • 5. Application Development with ChatGPT without code with Flowise
  • 1. Developing state-of-the-art LLMs
  • 2. Flowise Features
  • 3. Installation of Flowise
  • 4. Getting started with Flowise

  • 6. Flowise components
  • 1. Flowise components
  • 2. Flowise Modeling Component
  • 3. Flowise Prompts Component
  • 4. Vector Stores, Indices, Embeddings and Document Loaders of Flowise
  • 5. Flowise Memory Component
  • 6. Flowise Chain Component
  • 7. Flowise Agents and Tools

  • 7. Flowise Practical Project (Part I)
  • 1. Practical Exercise Designing the customized wizard
  • 2. Solution Customized wizard design
  • 3. Practical Exercise Basic ChatFlow Development
  • 4. Solution Basic ChatFlow Development
  • 5. Practical Exercise Development of an Assistant
  • 6. Solution Development of an Assistant

  • 8. LLM Model Training
  • 1. Different variants of LLMs and how to select them
  • 2. Data privacy in ChatGPT training

  • 9. LLM training with your own documents
  • 1. Fundamentals of LLM training with documents
  • 2. Lab Adding the QA Chain, Vector Store and PDF Loader
  • 3. Lab Adding Text Splitter and OpenAI Embeddings

  • 10. Vector Databases
  • 1. Introduction to vector databases and importance for LLMs
  • 2. Characteristics of vector databases
  • 3. Different Vector Databases
  • 4. Pinecone Fundamentals
  • 5. Adding Pinecone Vector Estore
  • 6. Loading Embeddings and Indexes from Pinecone

  • 11. Flowise Practical Project (Part II)
  • 1. Practical Exercise Developing Indexes and Embeddings for Pinecone
  • 2. Solution Creating Vectors and Indexes in Pinecone
  • 3. Practical Exercise Development of a Customized LLM
  • 4. Solution Development of a customized LLM
  • 5. Practical Exercise Putting into Production
  • 6. Solution Production deployment of the Custom LLM

  • 12. Multi-stage reasoning
  • 1. Multi-step reasoning
  • 2. Linking two large language models (LLM)
  • 3. Chaining a third language model

  • 13. Hugging Face and the integration of Hugging Face in Flowise
  • 1. Introduction to Hugging Face and its components
  • 2. Hugging Face interface and model and dataset selection
  • 3. Tokenizer and Hugging Face Models
  • 4. Hugging Face Datasets
  • 5. Practical Lab Use of models from Hugging Face
  • 6. Practical Lab Consuming the Hugging Face model from Python
  • 7. Practical Laboratory Using Hugging Face models from Flowise

  • 14. Open-source Large Language Models (LLMs)
  • 1. Benefits of open-source LLM models
  • 2. Different open-source LLM models and comparative analysis
  • 3. Fundamentals of the Llama model
  • 4. Alpaca model fundamentals
  • 5. Fundamentals of the Vicuna model
  • 6. Downloading and initialization of the model with Docker, LocalAI and GPT4All
  • 7. Using the LLM Open Source model from Flowise
  • 8. Advanced Project with Local AI LLama2, Faiss and Local AI Embeddings

  • 15. Falcon the most powerful Open-Source model to date
  • 1. Fundamentals of the Falcon model
  • 2. Practical Lab Using the Falcon 7b model from Flowise
  • 3. Practical Lab Using the Falcon 40b model from Flowise

  • 16. Open-Source Cloud Models with Replicate
  • 1. Replicate Basics
  • 2. Using LLM Open-source Llama, Vicuna and Falcon through Replicate
  • 3. Use of Replicates Llama2 model through Flowise

  • 17. Flowise Credentials
  • 1. Credential management in Flowise

  • 18. Auto-GPT the AI that outperformed ChatGPT
  • 1. Introduction to Auto-GPT
  • 2. Auto-GPT, BabyAGI and Jarvis models
  • 3. Practical Lab Using Auto-GPT
  • 4. Hands-on Lab Auto-GPT Basics in Flowise
  • 5. Hands-on Lab Using Auto-GPT from Flowise
  • 6. Baby AGI the evolution of the AutoGPT model

  • 19. Putting Flowise models into production
  • 1. Production Deployment of LLMs
  • 2. Putting into Production through APIs
  • 3. Adding credentials to APIs
  • 4. Querying PDF files using Flowise APIs

  • 20. Project from start to finish
  • 1. Web Scrapper, Pinecone and Conversational Retrieval QA Chain
  • 2. Improving the Web Scrapper and avoiding model hallucinations
  • 3. Alternative project configuration
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 24738
    حجم: 2408 مگابایت
    مدت زمان: 334 دقیقه
    تاریخ انتشار: ۲۱ آذر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید