وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

[NEW] AWS Certified AI Practitioner AIF-C01

سرفصل های دوره

Pass the AWS AI Practitioner AIF-C01 exam with this course by Jairo Pirona | Practice Exam included | All topics covered


1 - Introduction
  • 1 -INTRO
  • 2 -About the AWS Certified AI Practitioner exam
  • 3 -Creating an AWS Account
  • 4 -AWS Budgets
  • 5 -AWS Cost Explorer
  • 6 -The birth of Artificial Intelligence

  • 2 - Files and slides download
  • 1 -AWS-Certified-AI-Practitioner Exam-Guide.pdf
  • 1 -Amazon Q Business Getting Started Files.zip
  • 1 -PRESENTACION AI PRACTITIONER.pdf
  • 1 - Download study material.html

  • 3 - Domain 1 Fundamentals of AI and ML
  • 1 -Intro Domain 1 - Fundamentals of Machine Learning and Artificial Intelligence
  • 2 -Basic AI terms (AI, ML, deep learning, neural networks, computer vision, etc) P1
  • 3 -Basic AI terms (AI, ML, deep learning, neural networks, computer vision, etc) P2
  • 4 -Similarities and differences between AI, ML, and deep learning
  • 5 -Inferences, Data and Learning Techniques in AI. PARTE 1
  • 6 -Inferences, Data and Learning Techniques in AI. PARTE 2
  • 7 -Inferences, Data and Learning Techniques in AI. PARTE 3
  • 8 -Recognizing the applications where AIML can add value
  • 9 -Determining when AIML solutions are not appropriate
  • 10 -Selecting the appropriate ML techniques for specific use cases
  • 11 -Practical AI use cases - AWS managed AIML services. PART 1
  • 12 -Practical AI use cases - AWS managed AIML services. PART 2
  • 13 -Examples of real-world AI applications
  • 14 -Machine Learning Development Lifecycle. PART 1 (ML pipeline, lifecycle, etc)
  • 15 -Machine Learning Development Lifecycle. PART 2 (data collection, data pre, etc)
  • 16 -Machine Learning Development Lifecycle. PART 3 (model training, tuning)
  • 17 -Machine Learning Development Lifecycle. PART 4 (Evaluation)
  • 18 -Machine Learning Development Lifecycle. PART 5 (Evaluation)
  • 19 -Machine Learning Development Lifecycle. PART 6 (Deployment)
  • 20 -Machine Learning Development Lifecycle. PART 7 (Monitoring)
  • 21 -Fundamental concepts of ML operations (MLOps)

  • 4 - Domain 2 Fundamentals of Generative AI
  • 1 -INTRO
  • 2 -Foundational Generative AI concepts
  • 3 -Foundation Models (FM)
  • 4 -Multi-modal Models
  • 5 -Generative Adversarial Networks (GANs)
  • 6 -Variations Generative Adversarial Networks (GANs)
  • 7 -Diffusion Models
  • 8 -Potential use cases for Generative AI models
  • 9 -Foundation model lifecycle (Generative AI)
  • 10 -Advantages of Generative AI
  • 11 -Disadvantages of Generative AI solutions
  • 12 -Factors to select appropriate Generative AI models
  • 13 -Business value and metrics for Generative AI applications
  • 14 -AWS services and features to develop Generative AI applications
  • 15 -Advantages and Benefits of AWS AI solutions
  • 16 -Cost tradeoffs of AWS Generative AI services
  • 17 -AWS AIMLGen AI services stack

  • 5 - Domain 3 Applications of Foundation Models
  • 1 -INTRO
  • 2 -Criteria to choose pre-trained models
  • 3 -Retrieval Augmented Generation (RAG) and its business applications
  • 4 -Optimizing Foundation Models with RAG
  • 5 -Optimizing Foundation Models with fine-tuning
  • 6 -INTRO - Prompt Engineering
  • 7 -Concepts and constructs of prompt engineering
  • 8 -Modifying prompts
  • 9 -Best practices for prompt engineering
  • 10 -Prompt engineering techniques
  • 11 -Potential risks and limitations of prompt engineering

  • 6 - Domain 4 Guidelines for Responsible AI
  • 1 -Intro
  • 2 -Responsible AI
  • 3 -Responsible AI Challenges
  • 4 -Core dimensions of responsible AI
  • 5 -Business benefits of responsible AI
  • 6 -Amazon Services and Tools for Responsible AI
  • 7 -Responsible Considerations to Select a Model
  • 8 -Responsible Preparation for Datasets
  • 9 -Transparent and Explainable Models
  • 10 -AWS tools for transparency and explainability
  • 11 -Responsible AI Trade-Offs
  • 12 -Principles of Human-Centered Design for Explainable AI

  • 7 - Domain 5 Security, Compliance, and Governance for AI Solutions
  • 1 -Intro
  • 2 -Strategic Guidance for Security, Governance, and Compliance
  • 3 -Compliance Standards for AI Systems
  • 4 -AWS Services for Governance and Compliance
  • 5 -Data Governance Strategies
  • 6 -Approaches for Implementing Governance Strategies
  • 7 -Security and Privacy Considerations for AI Systems
  • 8 -AWS Services and Features for Securing AI Systems
  • 9 -Understanding Data and Model Lineage
  • 10 -Best Practices for Secure Data Engineering

  • 8 - Machine Learning Services Hands On
  • 1 -Amazon Q Business INTRO
  • 2 -Amazon Q Business PARTE 1
  • 3 -Amazon Q Business PARTE 2
  • 4 -Amazon Q Business PARTE 3
  • 5 -Amazon Bedrock
  • 6 -Amazon Rekognition
  • 7 -Amazon SageMaker
  • 8 -Amazon Augmented AI (Amazon A2I)
  • 9 -Amazon Comprehend
  • 10 -Amazon Comprehend DEMO
  • 11 -Amazon Kendra
  • 12 -Amazon Fraud Detector
  • 13 -Amazon Lex
  • 14 -Amazon Polly
  • 15 -Amazon Textract
  • 16 -Amazon Transcribe
  • 17 -Amazon Translate
  • 18 -Amazon Personalize

  • 9 - Exam Prep - AWS Certified AI Practitioner
  • 1 -Exam-Style Questions
  • 2 -Register for the Exam
  • 3 -Apply a 50% discount on your certification exam
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 41582
    حجم: 3353 مگابایت
    مدت زمان: 514 دقیقه
    تاریخ انتشار: 18 آذر 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید