وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
2

Natural Language Processing Bootcamp in Python

سرفصل های دوره

Learn the fundamentals of Text Mining and NLP using Text Processing, NLTK, Sentiment Analysis and Neural Networks


1 - Course Introduction
  • 1 - Course Scripts.txt
  • 1 - DareData Website.txt
  • 1 - Introduction
  • 1 - Ivos Github.txt
  • 1 - LinkedIn Ivo.txt
  • 2 - Note Course is being Updated during 2023
  • 3 - IMPORTANT LECTURE Dont skip this one
  • 4 - Course Materials and Speed Up.html

  • 2 - Installing Anaconda and Initial Setup
  • 5 - Link to slides.txt
  • 5 - Slides Setting up the Environment
  • 6 - Anaconda Distribution Download Link.txt
  • 6 - Installing the Anaconda Distribution
  • 7 - Importing an Environment to Anaconda
  • 8 - Creating an Environment from Scratch and Installing Individual Libraries
  • 9 - Alternative Running Notebooks on Google Colab

  • 3 - Optional for Beginners Python Basics MiniCourse
  • 10 - Link to Slides.txt
  • 10 - Slides Python Basics Course Part 1
  • 11 - Link to Slides.txt
  • 11 - Slides Python Basics Course Part 2
  • 12 - Getting Started Jupyter Notebook Overview
  • 13 - Using Python as a Calculator Exploring Integers and Floats
  • 14 - Exploring Python Libraries Modules Using the Math Library
  • 14 - Python Math Library Documentation.txt
  • 15 - Python Strings and Indexes
  • 16 - Python Lists
  • 17 - Discussing Methods and the Mutability Property
  • 18 - Python Sets
  • 19 - Python Dictionaries
  • 20 - Python Tuples
  • 21 - Control Flow If Statements
  • 22 - Control Flow Python Loops
  • 23 - Python Functions
  • 24 - Numpy Cheat Sheet.txt
  • 24 - Numpy Documentation.txt
  • 24 - Numpy Overview
  • 25 - Pandas Cheat Sheet.txt
  • 25 - Pandas Documentation.txt
  • 25 - Pandas Overview
  • 26 - Tutorial How to Complete the Exercises
  • 27 - Exercise Solutions Code Along Lecture

  • 4 - Optional for Beginners Basic Text Processing
  • 3 - Working with Text Quiz.html
  • 28 - Slides Basic Text Processing
  • 29 - Why Computers dont understand words as we do
  • 30 - String Indexing
  • 31 - Combining Strings
  • 32 - Iterating Strings and Format Method
  • 33 - Testing if String is in Sentence and Escaping Characters
  • 34 - String Methods 1 Sentence Length Conversions Casing Methods and IsAlpha
  • 35 - String Methods 2 Split Strip and Join
  • 36 - String Methods 3 Capitalize Replace Count and Find
  • 37 - Exercise Solutions Code Along Lecture String Basics

  • 5 - Exploring NLTK Natural Language Toolkit
  • 38 - Link to Slides.txt
  • 38 - Slides NLTK Intro Tokenizers and Text Normalization
  • 39 - Link to Slides.txt
  • 39 - Slides NLTK POS and NGrams
  • 40 - Natural Language Toolkit Library.txt
  • 40 - Section Introduction
  • 41 - Intro to Tokenization and Sentence Tokenizer
  • 41 - Natural Language Toolkit Library.txt
  • 41 - Punkt Sentence Tokenizer.txt
  • 42 - TreeBank Word Tokenizer.txt
  • 42 - Word Tokenizer Example
  • 43 - Cleaning our Tokens Removing Punctuation and lowercase
  • 44 - FreqDist NLTK Function
  • 45 - Introduction to Stemming Porter Lancaster and Snowball Stemmer
  • 45 - Porter Stemmer Documentation.txt
  • 45 - Stemming Corpus Medium Article.txt
  • 46 - Stemming Application Example
  • 47 - Introduction to Lemmatization
  • 48 - PartofSpeech POS Tagging
  • 48 - Perceptron POS Tagging Original Blog Post.txt
  • 49 - Training our own POS Tagger Part 1
  • 50 - Training our own POS Tagger Part 2 UniGram Tagger
  • 51 - Training our own POS Tagger Part 3 BiGram Tagger
  • 52 - Lemmatization and POS Tagging
  • 53 - Stop Words
  • 54 - NGrams Concept
  • 55 - Exercise Solutions Code Along Lecture NLTK

  • 6 - Project 1 Analyzing IMDB Reviews
  • 56 - Project Description Analyzing IMDB Reviews
  • 57 - Link to the Project Materials.html

  • 7 - Word Vectors Intuition
  • 58 - Slides Word Vectors Intuition
  • 59 - Introduction to Word Vectors and creating OneHot Vectors
  • 59 - Word Vectors Intuition Medium Article.txt
  • 60 - Initializing CoOccurence Matrix
  • 61 - Filling CoOccurence Matrix
  • 62 - Cosine Similarity Explanation.txt
  • 62 - Exploring Cosine Similarity
  • 63 - Visualizing Word Vectors
  • 64 - Exercise Solutions Code Along Lecture 1 Word Vectors
  • 65 - Exercise Solutions Code Along Lecture 2 Word Vectors

  • 8 - Optional Reading Text Data into Python
  • 66 - Link to slides.txt
  • 66 - Slides Reading Text Data into Python
  • 67 - Disaster Tweets Source Code.txt
  • 67 - Read Data from a CSV File Using Pandas
  • 68 - Read Data from a CSV File Using Python CSV
  • 69 - Paper where the data is based on.txt
  • 69 - Read Data from a TXT File
  • 70 - 1984 Wikipedia Page.txt
  • 70 - Scraping a Web Page using Requests and BeautifulSoup Wikipedia Example
  • 71 - Scraping a Web Page using Requests and BeautifulSoup Yahoo Finance Example
  • 72 - Scraping a Web Page Errors in Request
  • 73 - Scraping a Web Page using Specific Libraries

  • 9 - Continuous Bag of Words Implementation and Word2Vec
  • 74 - Link to slides.txt
  • 74 - Slides Neural Network Definition and Word2Vec
  • 75 - Continuous Bag of Words Model CBOW Introduction
  • 75 - Word2Vec Original Paper.txt
  • 76 - CBOW Creating Vocab and OneHot Vectors
  • 77 - CBOW Building Features X and Target Variable y
  • 78 - Neural Network Introduction and Diagram
  • 79 - A cool intuition on Neural Networks.txt
  • 79 - CBOW Training the Neural Network
  • 80 - CBOW Obtaining Word Vectors Embeddings
  • 81 - Extracting Wikipedia Data for CBOW Model
  • 82 - Building Context from Wikipedia Data
  • 83 - Turning Word and Context Into Mathematical Vectors
  • 84 - Fitting Neural Network on Wikipedia Data
  • 85 - Accuracy of a Model Intuition.txt
  • 85 - Performance of Neural Network and Predicting a Word Given a Context
  • 86 - Retrieving Word Embeddings and Word Similarities
  • 87 - Gensim Library.txt
  • 87 - Loading the Word2VecModel
  • 88 - Word2Vec Operations with Vectors Analogies
  • 89 - Word2Vec Visualizing Vectors using PCA
  • 90 - Exercise Solutions Code Along Lecture Word Vectors using Neural Networks

  • 10 - Project 2 The Python Archaelogist
  • 91 - Project Description The Python Archaelogist
  • 92 - Link to Project Materials.html

  • 11 - Text Representation
  • 93 - Slides Text Representation
  • 93 - Text Representation Medium Article.txt
  • 94 - Disaster Tweets Page.txt
  • 94 - Reading the Tweets File
  • 95 - Binary Vectorizer
  • 95 - Count Vectorizer Document.txt
  • 96 - Count Vectorizer
  • 97 - TFIDF Vectorizer
  • 98 - Creating Document Vectors via Word Embeddings
  • 99 - Exercise Solutions Text Representation Part 1
  • 100 - Exercise Solutions Text Representation Part 2

  • 12 - Text Classification
  • 101 - Slides Text Classification
  • 102 - Intro to Text Classification and Loading Positive Negative Reviews into Python
  • 103 - PreProcessing Text for Text Classification
  • 104 - Exploratory Data Analysis Log Ratio and Word Influence
  • 105 - Stemming and Vectorizing the Reviews
  • 106 - Creating WordVec Features and Target Array
  • 107 - Logistic Regression Intuition and Manually Tweaking Weights
  • 108 - Train and Test Split
  • 109 - Fitting and Evaluating Model
  • 110 - Obtaining the WeightsCoefficients of Regression Influence of Tokens
  • 111 - Training Model Using Word2Vec Features
  • 112 - Confusion Matrix Example
  • 113 - Naive Bayes Training
  • 114 - Predicting New Reviews Sentiment
  • 115 - Exercise Solutions Text Classification

  • 13 - Text Generation Markov Chain Models
  • 116 - Slides Text Classification
  • 117 - Introduction to Text Generation Tokenizing Sentence
  • 118 - Text Generation Building the Transition Matrix
  • 119 - First Attempt at Generating Text Using Transition Matrix
  • 120 - Creating the Transition Matrix for Wikipedia Data
  • 121 - Generating Text from Wiki Data Sampling from Top N Words
  • 122 - Exercise Solutions Text Generation

  • 14 - Course Ending
  • 123 - Bonus Lecture Other Courses.html
  • 124 - Course Feedback.html
  • 125 - Thank you
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 37444
    حجم: 14264 مگابایت
    مدت زمان: 1086 دقیقه
    تاریخ انتشار: ۲۰ خرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید